Approaches to in silico analysis of micobiome biodiversity metrics of radionuclide contaminated soils

Authors

  • O. Yu. Parenyuk National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • I. O. Simutin Taras Shevchenko National University of Kyiv image/svg+xml
  • D. O. Samofalova Institute of Food Biotechnology and Genomics NAS of Ukraine , ДУ «Інститут харчової біотехнології та геноміки НАН України»
  • Yu. V. Ruban National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • V. V. Illienko National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • N. H. Nesterova National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • I. M. Gudkov National University of Life and Environmental Sciences of Ukraine image/svg+xml

DOI:

https://doi.org/10.31548/bio2017.05.002

Abstract

The bioinformatic approaches to the processing of the results of total soil microorganisms DNA sequencing have been analyzed. The methodology that provides the highest quality and reliability of the source data was designed.

Keywords: microbiology of soil, radioactive contamination, bioinformatic methods

References

Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C., & Segata, N. (2015). Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ, 3, e1029. http://doi.org/10.7717/peerj.1029

Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., & Abebe, E. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1935–1943. http://doi.org/10.1098/rstb.2005.1725

Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8(3), 186–94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9521922

Gołębiewski, M., Deja-Sikora, E., Cichosz, M., Tretyn, A., & Wróbel, B. (2014). 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microbial Ecology, 67(3), 635–47. http://doi.org/10.1007/s00248-013-0344-7

Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.], Chapter 10, Unit 1E.5. http://doi.org/10.1002/9780471729259.mc01e05s27

Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821. http://doi.org/10.1038/nbt.2676

Luo, C., Rodriguez-R, L. M., Johnston, E. R., Wu, L., Cheng, L., Xue, K., … Konstantinidis, K. T. (2014). Soil microbial community responses to a decade of warming as revealed by comparative metagenomics.1. Luo C. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. / C. Luo, L. M. Rodriguez-R, E. R. Johnston[et a. Applied and Environmental Microbiology, 80(5), 1777–86. http://doi.org/10.1128/AEM.03712-13

McMurdie, P. J., Holmes, S., Kindt, R., Legendre, P., & O’Hara, R. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4), e61217. http://doi.org/10.1371/journal.pone.0061217

Pareniuk, O., Shavanova, K., Laceby, J. P., Illienko, V., Tytova, L., Levchuk, S., … Nanba, K. (2015). Modification of 137Cs transfer to rape (Brassica napus L.) phytomass under the influence of soil microorganisms. Journal of Environmental Radioactivity, 149, 73–80. http://doi.org/10.1016/j.jenvrad.2015.07.003

Puente-Sánchez, F., Aguirre, J., & Parro, V. (2016). A novel conceptual approach to read-filtering in high-throughput amplicon sequencing studies. Nucleic Acids Research, 44(4), e40. http://doi.org/10.1093/nar/gkv1113

Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864. http://doi.org/10.1093/bioinformatics/btr026

Schneider, T., Keiblinger, K. M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G., Roschitzki, B., … Riedel, K. (2012). Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. The ISME Journal, 6(9), 1749–62. http://doi.org/10.1038/ismej.2012.11

Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microbial Informatics and Experimentation, 2(1), 3. http://doi.org/10.1186/2042-5783-2-3

Published

2018-02-22

Issue

Section

Biology