Spatial organization of ecological niche of Vallonia Pulchella (Muller 1774) in turf -litogenic soils in gray-green clay (Nicipol manganese ore basin)

Authors

  • A. K. Umerova Bogdan Khmelnitsky Melitopol State Pedagogical University image/svg+xml

DOI:

https://doi.org/10.31548/bio2019.05.008

Keywords:

phytoindication, soil hardness, spatial heterogeneity, ecological niche, Vallonia pulchella

Abstract

The results of the study of the ecological niche of vallonia pulchella (muller 1774), using edaphic and phytoindication parameters, are presented in the paper. The research was conducted in June 2018 at a research site within the Nikopol Manganese ore basin, namely in turf-lithogenic soils on gray-green clays. The experimental site consisted of 105 samples located within 7 transects (15 samples in each). The distance between the rows in the landfill is 3 m. Quantitative recording of the micromolecule was carried out using a manual disassembly of soil-zoological samples measuring 25 × 25 cm to the depth of the animals. The average density of the micellar Vallonia pulchella is 2.27. According to the edaphic characteristics, the largest number of molluscs is observed at a depth of 45-50 cm (8.37%), and the smallest - 0-5 mm (2,16%). In the analysis of aggregate fractions, the number of molluscs has an amplitude character, and varies in the range from 10.53% to 2.69%, the largest number of them is on aggregate fractions 2-3 mm (22,61%), the smallest - <0,25 mm ( 2.69%). Dependence of the number of micro-mollusks on the edaphic properties of biogeocoenosis and phytoindication parameters was established. It was revealed that the characteristic feature of the investigated area is an elevated level of organic substances, as well as the provision of soil with nitrogen. The properties of the environmental niche Vallonia pulchella are estimated based on the provided edaphic and phytoindication characteristics. The obtained results can be considered as basic in ecological evaluation of artificial ground-like structures. Further research will focus on the analysis of micromelux groups in spatial-temporal dynamics.

References

Balašev I. Nazemnye mollûski (Gastropoda, Pulmonata) Poltavskoj oblasti. [Ground mollusks (Gastropoda, Pulmonata) of Poltava region] Nauč. zap. Gos. prirodovedč. muzeâ. Lʹvov, 2010. Vyp. 26. s. 191-198.

Bondarʹ, G. A., Žukov, A. V. (2011). Èkologičeskaâ struktura rastitelʹnogo pokrova, sformirovannogo v rezulʹtate samozarastaniâ dernovo-litogennyh počv na lessovidnyh suglinkah. [The ecological structure of vegetation formed as a result of self-growth of sod - lithogenic soils on loesslike loams] Vìsnik Dnìpropetrovsʹkogo deržavnogo agrarnogo unìversitetu, 1, s. 54-62.

Bulavkina O.V., T.G. Stojko «Opredelitelʹ nazemnyh mollûskov lesostepi Pravoberežnogo Povolžʹâ» [Persistent "Key to terrestrial mollusks of the forest-steppe of the right-bank Volga region"] M: Tovariŝestvo naučnyh izdanij KMK, 2010. s. 96.;

Vadûnina A. F., Korčagina Z. A. Metody issledovaniâ fizičeskih svojstv počv. [Methods of studying the physical properties of soils] M., Agropromizdat. 1986. 416 s.

Voloh, P. V., Uzbek, Ì. H. (2010). Sučasnij g̀runtogenez na rekulʹtivovanih lìtozemah zoni stepu Ukraïni. [Modern soil genesis on the reclaimed lithosomes of the steppe zone of Ukraine] Vìsnik Dnìpropetrovsʹkogo deržavnogo agrarnogo unìversitetu. 1, s. 39-47.

Žukov A. V., Zadorožnaâ G. A. Prostranstvennaâ izmenčivostʹ tverdosti rekulʹtiviruemyh počv. [Spatial variability of hardness of reclaimed soils] Principy èkologii. 2017. No 3. s. 66-80

Žukov A.V., Kunah O.N., Novikova V.A., Ganža D.S. «Fitoindikacionnoe ocenivanie kateny soobŝestv počvennoj mezofauny i ih èkomorfičeskaâ organizaciâ» [«Phytoindication assessment of the catena of soil mesofauna communities and their ecomorphic organization»] Biologičnij visnik MDPU ìmenì Bogdana Hmelʹnicʹkogo 6 (3), s. 91-117, 2016;

Liharev I.M., Rammelʹmejer E.S. Nazemnye mollûski fauny SSSR. [Ground mollusks of the fauna of the USSR] M.- L.: Izd-vo AN SSSR, 1952. 512 s. (Opredeliteli po faune SSSR. T. 43).

Medvedev V. V. Struktura počvy. [Soil structure] Harʹkov. 2008. 406 s.

Pahomov A. E., Konovalova T. M., Žukov A. V. GIS-podhod dlâ ocenki izmenčivosti èlektroprovodnosti počvy pod vliâniem pedoturbacionnoj aktivnosti slepyša (Spalax microphthalmus). [GIS approach for assessing the variability of the electrical conductivity of the soil under the influence of the pedoturbation activity of mole rats (Spalax microphthalmus)] Vìsnik Dnìpropetrovsʹkogo unìversitetu. Bìologìâ. Ekologìâ. 2010. Vip. 18, t. 1. s. 58-66. https://doi.org/10.15421/011009

Perevozkin P.P., Gordeev M.I. Èkologičeskaâ niša: Metodičeskaâ razrabotka. [Ecological niche: Methodological development] Tomsk: Centr učebno-metodičeskoj literatury TGPU, 2004. s. 20

Sverlova N.V., Guralʹ R.Ì. Viznačnik nazemnih molûskìv zahodu Ukraïni. [Determinant of land molluscs in western Ukraine] Lʹvìv, 2005. 218 s.

Šebanìn V.S., Kramarenko S.S., Ganganov V.M. Analìz strukturi populâcìj. [Population structure analysis] Mikolaïv, 2008. 232 s.;

Dray, S., Legendre, P., Peres-Neto, P. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecological Modelling, 196, 483-493. https://doi.org/10.1016/j.ecolmodel.2006.02.015

Didukh Ya. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre, 176.

Graveland, J. & van der Wal, R. (1996). Decline in snail abundance due to soil acidification causes eggshell defects in forest passerines. Oecologia, 105(3), pp. 351-360

https://doi.org/10.1007/BF00328738

Hall, L., Krausman, P., & Morrison, M. (1997). The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25, 173-182.

Hirzel A. H., Guisan A. (2002). Which is the optimal sampling strategy for habitat suitability modeling // Ecological Modelling. 157(2-3), 331-341.

https://doi.org/10.1016/S0304-3800(02)00203-X

Hubricht L. 1985. The distributions of the native land mollusks of the Eastern United States. Fieldiana: Zoology New Ser: 24. 191 p. https://doi.org/10.5962/bhl.title.3329

Hutchinson G. E. (1957). Concluding remarks // Cold Spring Harbour Symposium on Quantitative Biology, 22.,415-427.

https://doi.org/10.1101/SQB.1957.022.01.039

Jones, C.G. & Shachak, M. (1990). Fertilization of the desert soil by rock- eating snails. Nature, 346(6287), pp. 839-841.

https://doi.org/10.1038/346839a0

Jones, C.G. & Shachak, M. (1994). Desert snail's daily grind. Natural History, 103(8), pp. 56-61.

Kearney, M. P., & Cameron, R. A. D. (1979). A field guide to the land snails of Britain and North West Europe. Collins, London.

Martin, K., & Sommer, M. (2004). Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. Journal of Biogeography, 31(4), 531-545.

https://doi.org/10.1046/j.1365-2699.2003.01005.x

Millar, A. J., & Waite, S. (1999). Mollusks in coppice woodland. Journal of Conchology, 36, 25-48.

Müller, J., Strätz, C., & Hothorn, T. (2005). Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. European Journal of Forest Research, 124(3), 233-242. https://doi.org/10.1007/s10342-005-0071-9

Nekola, J. C. (2003). Large-scale terrestrial gastropod community composition patterns in the Great Lakes region of North America. Diversity and Distributions, 9(1), 55-71.

https://doi.org/10.1046/j.1472-4642.2003.00165.x

Pidwirny, M. "Concept of Ecological Niche." Fundamentals of Physical Geography, 2nd Edition. 2006. (Sept. 12, 2010) http://www.physicalgeography.net/fundamentals/9g.html

Simkiss, K. (1976). Intracellular and extracellular routes in bioremineralization. Symposia of the Society of Experimental Biology, 30, pp. 423-444

Thompson, L., Thomas, C.D., Radley, J.M.A., Williamson, S. & Lawton, J.H. (1993). The effect of earthworms and snails in a simple plant community. Oecologia, 95(2), pp. 171-178.

https://doi.org/10.1007/BF00323487

Weaver, K. F., Anderson, T., & Guralnick, R. (2006). Combining phylogenetic and ecological niche modeling approaches to determine distribution and historical biogeography of Black Hills mountain snails (Oreohelicidae). Diversity and Distributions, 12(6), pp. 756-766.

https://doi.org/10.1111/j.1472-4642.2006.00289.x

Published

2019-12-20

Issue

Section

Ecology