Effect of chelates of mineral elements on adaptive processes in the organism under oxidative stress

Автор(и)

  • R. Palonko Національний університет біоресурсів і природокористування України image/svg+xml
  • L. Kalachniuk Національний університет біоресурсів і природокористування України image/svg+xml

DOI:

https://doi.org/10.31548/biologiya13(1-2).2022.008

Ключові слова:

bio-preparations, chelate, magnesium, phosphorus, oxidative stress

Анотація

A review of literary sources shows the prevalence of the problem of the development of oxidative stress as a side effect of many pathological processes in animals and humans. It is essential to develop ways and means of its prevention and correction since its correction can be a non-specific therapy in developing many pathological processes.

The development of oxidative stress caused deviations in redox processes, the permeability of cellular membranes, and their integrity. Overcoming the effects of oxidative stress requires bio-preparations with high bioavailability, which can stimulate the body's natural antioxidant defense system and neutralize the toxic effects of xenobiotics. Reducing the manifestation of oxidative stress is often adapting the body's natural antioxidant protection system to increase the supply or formation of reactive oxygen species and free radical oxidation products.

Macro- and microelements are absorbed by the body of animals and humans mainly through the digestive system. To correct deficiencies of certain elements, mineral, and vitamin-mineral supplements used in the diet, and drugs for parenteral administration - under acute deficiency.

Chelates of chemical elements are increasingly used in therapeutic practice, as they are characterized by higher bioavailability compared to organic and inorganic salts of the same elements.

The use of compounds with higher bioavailability makes it possible to introduce a smaller amount of the drug in terms of metal, which will avoid the irritating effect and improve the organoleptic indicators, preserving or even enhancing the therapeutic effect. Chelates have a lower irritating effect at the same concentrations as in saline solutions.

Therefore, the study of the biochemical mechanisms of action of the drug (in particular, in the correction of oxidative stress) is an urgent issue that prompts us to study it to develop a drug with high bioavailability and confirm its effectiveness.

Посилання

Hybertson, B. M., Gao, B., Bose, S. K., & McCord, J. M. (2011). Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Molecular Aspects of Medicine, 32(4-6), 234–246. https://doi.org/10.1016/j.mam.2011.10.006

Tarallo, A., Damiano, C., Strollo, S., Minopoli, N., Indrieri, A., Polishchuk, E., Zappa, F., Nusco, E., Fecarotta, S., Porto, C., Coletta, M., Iacono, R., Moracci, M., Polishchuk, R., Medina, D. L., Imbimbo, P., Monti, D. M., De Matteis, M. A., & Parenti, G. (2021). Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Molecular Medicine, 13(11), e14434. https://doi.org/10.15252/emmm.202114434

Melov, S. (2002). Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. The International Journal of Biochemistry & Cell Biology, 34(11), 1395–1400. https://doi.org/10.1016/s1357-2725(02)00086-9

Barnes, P. J. (2020). Oxidative stress-based therapeutics in COPD. Redox Biology, 33, 101544. https://doi.org/10.1016/j.redox.2020.101544

Morais, J. B., Severo, J. S., Santos, L. R., de Sousa Melo, S. R., de Oliveira Santos, R., de Oliveira, A. R., Cruz, K. J., & do Nascimento Marreiro, D. (2017). Role of magnesium in oxidative stress in individuals with obesity. Biological Trace Element Research, 176(1), 20–26. https://doi.org/10.1007/s12011-016-0793-1

Kaliaperumal, R., Venkatachalam, R., Nagarajan, P., & Sabapathy, S. K. (2021). Association of serum agnesium with oxoidative stress in the pathogenesis of diabetic cataract. Biological Trace Element Research, 199(8), 2869–2873. https://doi.org/10.1007/s12011-020-02429-9

Chen, Y., Xiong, S., Zhao, F., Lu, X., Wu, B., & Yang, B. (2019). Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 107(6), 1253–1263. https://doi.org/10.1002/jbm.a.36634

Hax, L. T., Rincón, J., Schneider, A., Pegoraro, L., Franco Collares, L., Alves Pereira, R., Pradieé, J., Del Pino, F., & Nunes Corrêa, M. (2019). Effect of butafosfan supplementation during oocyte maturation on bovine embryo development. Zygote, 27(5), 321–328. https://doi.org/10.1017/S0967199419000327

Nuber, U., van Dorland, H. A., & Bruckmaier, R. M. (2016). Effects of butafosfan with or without cyanocobalamin on the metabolism of early lactating cows with subclinical ketosis. Journal of Animal Physiology and Animal Nutrition, 100(1), 146–155. https://doi.org/10.1111/jpn.12332

Kreipe, L., Deniz, A., Bruckmaier, R. M., & van Dorland, H. A. (2011). First report about the mode of action of combined butafosfan and cyanocobalamin on hepatic metabolism in nonketotic early lactating cows. Journal of Dairy Science, 94(10), 4904–4914. https://doi.org/10.3168/jds.2010-4080

Rollin, E., Berghaus, R. D., Rapnicki, P., Godden, S. M., & Overton, M. W. (2010). The effect of injectable butaphosphan and cyanocobalamin on postpartum serum beta-hydroxybutyrate, calcium, and phosphorus concentrations in dairy cattle. Journal of Dairy Science, 93(3), 978–987. https://doi.org/10.3168/jds.2009-2508

Патент України на корисну модель №139707. Препарат ветеринарний «Біофосфомаг». МПК, А61К 31/66 (2006.01). Калачнюк Л. Г., Арнаута О. В., Вірьовка В. М., Пальонко Р. І., Смірнов О. О., Мартиненко О. А., Прис-Каденко В. О., Аль-Баду Л-Є. Н. Номер заявки: u 201907874. Дата подання заявки: 11.07.2019 р. Опубліковано 10.01.2020, Бюл. № 1/2020 (a)

Патент України на корисну модель №139707. Препарат ветеринарний «Біофосфомаг-Плюс». МПК, А61К 31/66 (2006.01). Калачнюк Л. Г., Арнаута О. В., Вірьовка В. М., Пальонко Р. І., Смірнов О. О., Мартиненко О. А., Прис-Каденко В. О., Аль-Баду Л-Є. Н. Номер заявки: u 201907874. Дата подання заявки: 11.07.2019 р. Опубліковано 10.01.2020, Бюл. № 1/2020 (b)

Grande, A., Leleu, S., Delezie, E., Rapp, C., De Smet, S., Goossens, E., Haesebrouck, F., Van Immerseel, F., & Ducatelle, R. (2020). Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poultry Science, 99(1), 441–453. https://doi.org/10.3382/ps/pez525

Jahanian, R., & Rasouli, E. (2015). Effects of dietary substitution of zinc-methionine for inorganic zinc sources on growth performance, tissue zinc accumulation and some blood parameters in broiler chicks. Journal of Animal Physiology and Animal Nutrition, 99(1), 50–58. https://doi.org/10.1111/jpn.12213

Breymann, C., Honegger, C., Hösli, I., & Surbek, D. (2017). Diagnosis and treatment of iron-deficiency anaemia in pregnancy and postpartum. Archives of Gynecology and Obstetrics, 296(6), 1229–1234. https://doi.org/10.1007/s00404-017-4526-2

Fong, J., & Khan, A. (2012). Hypocalcemia: Updates in diagnosis and management for primary care. Canadian Family Physician, 58(2), 158–162. https://pubmed.ncbi.nlm.nih.gov/22439169/

Shah, N. C., Shah, G. J., Li, Z., Jiang, X. C., Altura, B. T., & Altura, B. M. (2014). Short-term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: Relevance to atherogenesis, cardiovascular diseases and aging. International Journal of Clinical and Experimental Medicine, 7(3), 497–514. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992387/

Yamamoto, M., & Yamaguchi, T. (2007). Causes and treatment of hypomagnesemia. Clinical Calcium, 17(8), 1241–1248. https://europepmc.org/article/MED/17660622

Shenkin, A. (2006). Micronutrients in health and disease. Postgraduate Medical Journal, 82(971), 559–567. https://doi.org/10.1136/pgmj.2006.047670

Cao, J., Henry, P. R., Guo, R., Holwerda, R. A., Toth, J. P., Littell, R. C., Miles, R. D., & Ammerman, C. B. (2000). Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science, 78(8), 2039–2054. https://doi.org/10.2527/2000.7882039x

Fouad, G. T., Evans, M., Sharma, P., Baisley, J., Crowley, D., & Guthrie, N. (2013). A randomized, double-blind clinical study on the safety and tolerability of an iron multi-amino acid chelate preparation in premenopausal women. Journal of Dietary Supplements, 10(1), 17–28. https://doi.org/10.3109/19390211.2012.758217

Miner-Williams, W. M., Stevens, B. R., & Moughan, P. J. (2014). Are intact peptides absorbed from the healthy gut in the adult human? Nutrition Research Reviews, 27(2), 308–329. https://doi.org/10.1017/S0954422414000225

Ashmead, S. D. (2001). The chemistry of ferrous bis-glycinate chelate. Archivos Latinoamericanos de Nutricion, 51(1), 7–12. https://pubmed.ncbi.nlm.nih.gov/11688084/

Thongon, N., & Krishnamra, N. (2011). Omeprazole decreases magnesium transport across Caco-2 monolayers. World Journal of Gastroenterology, 17(12), 1574–1583. https://doi.org/10.3748/wjg.v17.i12.1574

Thongon, N., & Krishnamra, N. (2012). Apical acidity decreases inhibitory effect of omeprazole on Mg(2+) absorption and claudin-7 and -12 expression in Caco-2 monolayers. Experimental & Molecular Medicine, 44(11), 684–693. https://doi.org/10.3858/emm.2012.44.11.077

Robberecht, H., Verlaet, A., Breynaert, A., De Bruyne, T., & Hermans, N. (2020). Magnesium, iron, zinc, copper and selenium status in attention-deficit/hyperactivity disorder (ADHD). Molecules, 25(19), 4440. https://doi.org/10.3390/molecules25194440

Hertrampf, E., & Olivares, M. (2004). Iron amino acid chelates. International Journal for Vitamin and Nutrition Research, 74(6), 435–443. https://doi.org/10.1024/0300-9831.74.6.435

Jeppsen, R. B. (2001). Toxicology and safety of Ferrochel and other iron amino acid chelates. Archivos Latinoamericanos de Nutricion, 51(1), 26–34. https://pubmed.ncbi.nlm.nih.gov/11688078/

Pineda, O., & Ashmead, H. D. (2001). Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition, 17(5), 381–384. https://doi.org/10.1016/s0899-9007(01)00519-6

Ibrahim, O., & O’Sullivan, J. (2020). Iron chelators in cancer therapy. Biometals, 33(4-5), 201–215. https://doi.org/10.1007/s10534-020-00243-3

Kwiatkowski, J. L. (2008). Oral iron chelators. Pediatric Clinics of North America, 55(2), 461–482. https://doi.org/10.1016/j.pcl.2008.01.005

Kontoghiorghe, C. N., Kolnagou, A., & Kontoghiorghes, G. J. (2015). Phytochelators intended for clinical use in iron overload, other diseases of iron imbalance and free radical pathology. Molecules, 20(11), 20841–20872. https://doi.org/10.3390/molecules201119725

Name, J. J., Vasconcelos, A. R., & Valzachi Rocha Maluf, M. C. (2018). Iron bisglycinate chelate and polymaltose iron for the treatment of iron deficiency anemia: A pilot randomized trial. Current Pediatric Reviews, 14(4), 261–268. https://doi.org/10.2174/1573396314666181002170040

Ma, W. Q., Sun, H., Zhou, Y., Wu, J., & Feng, J. (2012). Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biological Trace Element Research, 149(2), 204–211. https://doi.org/10.1007/s12011-012-9418-5

Case, D. R., Zubieta, J., Gonzalez, R., & Doyle, R. P. (2021). Synthesis and chemical and biological evaluation of a glycine tripeptide chelate of magnesium. Molecules, 26(9), 2419. https://doi.org/10.3390/molecules26092419

Rutkowska-Zbik, D., Witko, M., & Fiedor, L. (2013). Ligation of water to magnesium chelates of biological importance. Journal of Molecular Modeling, 19(11), 4661–4667. https://doi.org/10.1007/s00894-012-1459-3

Case, D. R., Zubieta, J., & P Doyle, R. (2020). The coordination chemistry of bio-relevant ligands and their magnesium complexes. Molecules, 25(14), 3172. https://doi.org/10.3390/molecules25143172

Durlach, J., Guiet-Bara, A., Pagès, N., Bac, P., & Bara, M. (2005). Magnesium chloride or magnesium sulfate: A genuine question. Magnesium Research, 18(3), 187–192. https://pubmed.ncbi.nlm.nih.gov/16259379/

Rehan, F., Ahemad, N., & Gupta, M. (2019). Casein nanomicelle as an emerging biomaterial-A comprehensive review. Colloids and Surfaces B: Biointerfaces, 179, 280–292. https://doi.org/10.1016/j.colsurfb.2019.03.051

Madende, M., Osthoff, G., Patterton, H. G., Patterton, H. E., Martin, P., & Opperman, D. J. (2015). Characterization of casein and alpha lactalbumin of African elephant (Loxodonta africana) milk. Journal of Dairy Science, 98(12), 8308–8318. https://doi.org/10.3168/jds.2014-9195

Rafiq, S., Huma, N., Pasha, I., Sameen, A., Mukhtar, O., & Khan, M. I. (2016). Chemical composition, nitrogen fractions and mino aacids profile of milk from different animal species. Asian-Australasian Journal of Animal Sciences, 29(7), 1022–1028. https://doi.org/10.5713/ajas.15.0452

Li, C., Chen, T., & Han, L. B. (2016). Iron-catalyzed clean dehydrogenative coupling of alcohols with P(O)-H compounds: A new protocol for ROH phosphorylation. Dalton Transactions, 45(38), 14893–14897. https://doi.org/10.1039/c6dt02236g

Xiong, B., Wang, G., Zhou, C., Liu, Y., Li, J., Zhang, P., & Tang, K. (2018). DCC-assisted direct esterification of phosphinic and phosphoric acids with O-nucleophiles. Phosphorus, Sulfur, and Silicon and the Related Elements, 193(4), 239-244. https://doi.org/10.1080/10426507.2017.1395438

Matheis, G., Penner, M. H., Feeney, R. E., & Whitaker, J. R. (1983). Phosphorylation of casein and lysozyme by phosphorus oxychloride. Journal of Agricultural and Food Chemistry, 31(2), 379–387. https://doi.org/10.1021/jf00116a049

Li, Q., Dahl, D. B., Vannucci, M., Joo H., & Tsai, J. W. (2014). Bayesian model of protein primary sequence for secondary structure prediction. PloS one, 9(10), e109832. https://doi.org/10.1371/journal.pone.0109832

Smith, M. B. (2001). Acyl substitution reactions. In M. B. Smith & J. March (Eds.), Advanced organic chemistry (5th ed., pp. 1218-1223). New York: Wiley Interscience.

Kamiya, K., Boero, M., Shiraishi, K., & Oshiyama, A. (2006). Enol-to-keto tautomerism of peptide groups. The Journal of Physical Chemistry B, 110(9), 4443–4450. https://doi.org/10.1021/jp056250p

Sproul, G. D. (2020). Evaluation of electronegativity scales. ACS Omega, 5(20), 11585–11594. https://doi.org/10.1021/acsomega.0c00831

Flora, S. J., & Pachauri, V. (2010). Chelation in metal intoxication. International Journal of Environmental Research and Public Health, 7(7), 2745–2788. https://doi.org/10.3390/ijerph7072745

Hybertson, B. M., Gao, B., Bose, S. K., & McCord, J. M. (2011). Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Molecular Aspects of Medicine, 32(4-6), 234–246. https://doi.org/10.1016/j.mam.2011.10.006

Melov, S. (2002). Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. The International Journal of Biochemistry & Cell Biology, 34(11), 1395–1400. https://doi.org/10.1016/s1357-2725(02)00086-9

Tarallo, A., Damiano, C., Strollo, S., Minopoli, N., Indrieri, A., Polishchuk, E., Zappa, F., Nusco, E., Fecarotta, S., Porto, C., Coletta, M., Iacono, R., Moracci, M., Polishchuk, R., Medina, D. L., Imbimbo, P., Monti, D. M., De Matteis, M. A., & Parenti, G. (2021). Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Molecular Medicine, 13(11), e14434. https://doi.org/10.15252/emmm.202114434

Morais, J. B., Severo, J. S., Santos, L. R., de Sousa Melo, S. R., de Oliveira Santos, R., de Oliveira, A. R., Cruz, K. J., & do Nascimento Marreiro, D. (2017). Role of magnesium in oxidative stress in individuals with obesity. Biological Trace Element Research, 176(1), 20–26. https://doi.org/10.1007/s12011-016-0793-1

Kaliaperumal, R., Venkatachalam, R., Nagarajan, P., & Sabapathy, S. K. (2021). Association of serum agnesium with oxoidative stress in the pathogenesis of diabetic cataract. Biological Trace Element Research, 199(8), 2869–2873. https://doi.org/10.1007/s12011-020-02429-9

Chen, Y., Xiong, S., Zhao, F., Lu, X., Wu, B., & Yang, B. (2019). Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 107(6), 1253–1263. https://doi.org/10.1002/jbm.a.36634

Weiller, M., Alvarado-Rincón, J. A., Jacometo, C. B., Barros, C. C., de Souza, I., Hax, L. T., da Silva, T. C., Mattei, P., Barbosa, A. A., Feijó, J. O., Pereira, R. A., Brauner, C. C., Rabassa, V. R., Del Pino, F., & Corrêa, M. N. (2020). Butaphosphan effects on glucose metabolism involve insulin signaling and depends on nutritional plan. Nutrients, 12(6), 1856. https://doi.org/10.3390/nu12061856

Pereira, R. A., Silveira, P. A., Montagner, P., Schneider, A., Schmitt, E., Rabassa, V. R., Pfeifer, L. F., Del Pino, F. A., Pulga, M. E., & Corrêa, M. N. (2013). Effect of butaphosphan and cyanocobalamin on postpartum metabolism and milk production in dairy cows. Animal: An International Journal of Animal Bioscience, 7(7), 1143–1147. https://doi.org/10.1017/S1751731113000013

Głąb, T. K., & Boratyński, J. (2017). Potential of casein as a carrier for biologically active agents. Topics in Current Chemistry, 375(4), 71. https://doi.org/10.1007/s41061-017-0158-z

Udechukwu, M. C., Collins, S. A., & Udenigwe, C. C. (2016). Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food & Function, 7(10), 4137–4144. https://doi.org/10.1039/c6fo00706f

Allen, L. H. (2002). Advantages and limitations of iron amino acid chelates as iron fortificants. Nutrition Reviews, 60(7), S18–S45. https://doi.org/10.1301/002966402320285047

Barnes, P. J. (2020). Oxidative stress-based therapeutics in COPD. Redox Biology, 33, 101544. https://doi.org/10.1016/j.redox.2020.101544

Rubio-Aliaga, I., & Daniel, H. (2008). Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica, 38(7-8), 1022–1042. https://doi.org/10.1080/00498250701875254

Завантаження

Опубліковано

2022-09-01

Номер

Розділ

Статті