Numerical modeling of heat exchanger for various ventilation systems
DOI:
https://doi.org/10.31548/energiya2018.03.113Abstract
The purpose of the research is to develop and numerical modeling of the shell-tube heat exchanger of a new design as an element of the microclimate maintenance system for various types of ventilation systems in the summer season.
Materials and methods of research. As mentioned above, two types of ventilation systems are considered - tunnel and lateral. For these ventilation systems TA is projected. The poultry house is a traditional type. At the side walls there are openings with jackets in the total number of 80 pieces. with dimensions 0,3×0,85 m. And also on the front end walls are located evacuation cooling tapes with dimensions of 5,1×1,1 m. In place of the cassettes and louver we fit the HE.
Consider the shell and tube heat exchanger with a shell of a rectangular cross section in the transverse flow of pipe beams. The geometry of the pipes with diameters d = 10 mm is peculiar, which differs from the traditional chess, corridor and compact beams. Neighboring pipes in such close beams are displaced one relative to the other at a distance of 1 mm. Moreover, we consider two types of beam construction, in which there is a displacement of pipes in a transverse direction along the entire length of the tube beam by 15 mm.
All calculations are performed at a volume flow of air 1036 thousand m3/h. As a coolant air is selected with a temperature of +40 oС at the inlet, which flows in the channels for cooling the external heated air in the poultry house in the summer period of the year, where as the cooler is used water underground wells. In the soybean, cold water moving inside the pipes, which has an inlet temperature of +10 oC. The layout of the heat carrier movement is cross-linked.
Research results and their discussion. The temperature change for different ventilation systems. For tunnel ventilation, the temperature in the TA decreases from +40 to +22.5 oC (Fig. 2), and for the side - from +40 to +19,7 oС.
Conclusions and perspectives.
1. A new design of a shell-tube heat exchanger with a compact arrangement of pipes in tubular beams is proposed and developed.
2. Computer-aided mathematical modeling of heat and mass transfer processes in bundles of pipes of different geometries with compact placement of pipes using the software ANSYS Fluent. The fields of velocities, temperatures, and pressure in the studied channels are obtained. The conditions of the hydrodynamic flow in the channels were analyzed and estimates of the heat transfer intensity between the hot and cold coolant through the wall separating them.
3. It was determined that the tunnel ventilation system would be most effective and TA was designed for it.
References
Horobets V. H., Trokhaniak V. I. (2015). Kompiuterne matematychne modeliuvannia protsesiv teplo- i masoperenosu pry ventyliatsii povitria v ptakhivnychykh prymishchenniakh [Computer mathematical modeling of heat and mass transfer of air ventilation in poultry houses]. Naukovyi visnyk Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu. №5. Rezhym dostupu do resursu: http://nauka.tsatu.edu.ua/e-journals-tdatu/pdf5t1/24.pdf.
Horobets ,V. H., Trokhaniak, V. I. (2013). Matematychne modeliuvannia protsesiv hidrodynamiky i teploobminu v okholodzhuvachakh povitria ptakhivnychykh prymishchen [Mathematical modeling of processes of hydrodynamics and heat-exchange processes in air coolers of poultry houses] Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK». №184(2), 101–110.
Horobets, V. H., Trokhaniak, V. Y. (2015). Kompiuternoe matematycheskoe modelyrovanye protsessov teplo- y massoperenosa pry ventyliatsyy vozdukha v ptytsevodcheskykh pomeshchenyiakh [Computer mathematical modeling of heat and mass transfer of air ventilation in poultry houses]. Vestnyk Vserossyiskoho nauchno-yssledovatelskoho ynstytuta elektryfykatsyy selskoho khoziaistva. №4(20), 85–90.
Horobets, V. H. Trokhaniak, V. I., Bohdan, Yu. O. (2015). Eksperymentalne doslidzhennia okholodzhennia pryplyvnoho povitria u ptakhivnychykh prymishchenniakh [Experimental study of cooling air supply poultry premises]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK». 224, 204–208.
Zhukauskas, A. A. (1982). Konvektyvnui perenos v teploobmennykakh [Convective transfer in heat exchangers]. Moskow: Nauka, 472.
Horobets, V. H. (2010). Teplohidravlichna efektyvnist poverkhon z intensyfikatoramy teploobminu ta orebrenniam [Teplohidraulicheskoe efficiency of surfaces with intensifiers of heat exchange and sharpening]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK», №148, 46–56.
Khalatov, A. A., Onyshchenko, V. N., Borysov, Y. Y. (2007). Analohyia perenosa teplotы y kolychestva dvyzhenyia v kanalakh s poverkhnostiamy heneratoramy vykhrei [An analogy of heat transfer and momentum in channels with surfaces by vortex generators]. Dokladu NAN Ukraynu, №6 70–75.
Horobets, V. H., Trokhaniak, V. I. (2014). Modeliuvannia protsesiv perenosu ta teplohidravlichna efektyvnist kozhukhotrubnoho teploobminnyka z kompaktnym roztashuvanniam puchkiv trub [The heat exchanger, tube bundle, thermal-hydraulic performance, mathematical modeling, flow rate, hydraulic losses, temperature]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK». №194(2), 147–155.
Trokhaniak, V. Y., Bohdan, Yu. A. (2015). Otsenka teplohydravlycheskoi еffektyvnosty kozhukhotrubnoho teploobmennoho apparata s kompaktnum razmeshchenyem trub v puchkakh na osnove kompiuternoho chyslennoho modelyrovanyia protsessov teplomassoperenosa [Evaluating of thermal-hydraulic efficiency shell-and-tube heat exchanger with the compact arrangement of the tube bundles on the basis of the computer numerical simulations of process of heat and mass transfer]. APRIORI. Seryia «Estestvennыe y tekhnycheskye nauky». №6. Rezhym dostupa k resursu: http://apriori-journal.ru/seria2/6-2015/Trohanyak-Bogdan2.pdf.
Trokhaniak, V. I. (2015). Vyznachennia koefitsiienta teploviddachi pry chyselnomu modeliuvanni trubnoho puchka [Definition of coefficient of heat transfer numerical simulation tube bundle]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu. №15(2), 332–337.
Horobets, V. H., Trokhaniak, V. I. (2015). Eksperymentalne doslidzhennia teploobminnoho aparata novoi konstruktsii [Experimental study heat exchanger new design]. Enerhetyka i avtomatyka. №4. Rezhym dostupu do resursu:
http://journals.nubip.edu.ua/index.php/Energiya/article/viewFile/5247/5160.
Horobets, V. H., Bohdan, Yu. O., Trokhaniak, V. I. (2017). Teploobminne obladnannia dlia koheneratsiinykh ustanovok [Heat-exchange equipment for cogeneration plants]. Кyiv: «PC «Коmprint», 203.
Trokhaniak, V. I., Antipov, I. O., Bohdan, Yu. O. (2018). Rozrobka ta chyselne modeliuvannia teploobminnoho obladnannia novoi konstruktsii dlia system pidtrymannia mikroklimatu u ptashnykakh [Development and numerical simulation of new design heat exchange equipment for microclimate maintenance systems in poultry houses]. Naukovyi zhurnal KhNTUSH imeni Petra Vasylenka «Tekhnichnyi servis ahropromyslovoho, lisovoho ta transportnoho kompleksu», №12, 50–58.
Trokhaniak, V. I., Antipov, I. O., Bohdan, Yu. O. (2018). Rozrobka ta chyselne modeliuvannia teploobminnoho obladnannia novoi konstruktsii dlia system pidtrymannia mikroklimatu u ptashnykakh [Development and numerical simulation of new design heat exchange equipment for microclimate maintenance systems in poultry houses]. Naukovyi zhurnal KhNTUSH imeni Petra Vasylenka «Inzheneriia pryrodokorystuvannia», №1(9), 48–56.
Trokhaniak, V. I. (2015). Pobudova sitky ANSYS Meshing dlia CFD modelei metodom kintsevykh elementiv [Construction mesh in ANSYS Meshing models for CFD finite elements method]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK», №209(2), 244–249.
Trokhaniak, V. I., Bohdan, Yu. O. (2015). Zastosuvannia metodu kintsevykh elementiv pry pobudovi sitky v Ansys Meshing dlia CFD modelei [The finite element method in making up meshes in ANSYS Meshing for CFD models]. Visnyk Pryazovskoho derzhavnoho tekhnichnoho universytetu. Seriia «Tekhnichni nauky», №30(2), 181–189.
Normy tekhnolohycheskoho proektyrovanyia ptytsevodcheskykh predpryiatyi. NTP-APK 1.10.05.001-01(vzamen RNTP 4-93). – [Data vvedenyia 2002-01-03]. – Odobrenu NTS Mynselkhoza Rossyy (protokol ot 03.08.01 № 23).
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).