Neural network forecast of leak current based on technological parameters

Authors

  • V. Gerasymenko SEPARATED SUBDIVISION NATIONAL UNIVERSITY OF BIORESOURCES AND NATURE USE OF UKRAINE "NIZHYN AGROTECHNICAL INSTITUTE" , ВП НУБіП України "Ніжинський агротехнічний інститут"
  • V. Vasylenko SEPARATED SUBDIVISION NATIONAL UNIVERSITY OF BIORESOURCES AND NATURE USE OF UKRAINE "NIZHYN AGROTECHNICAL INSTITUTE" , ВП НУБіП України "Ніжинський агротехнічний інститут"
  • N. Maiborodina SEPARATED SUBDIVISION NATIONAL UNIVERSITY OF BIORESOURCES AND NATURE USE OF UKRAINE "NIZHYN AGROTECHNICAL INSTITUTE" , ВП НУБіП України "Ніжинський агротехнічний інститут"
  • O. Kovalov Dmytro Motornyi Tavria State Agrotechnological University image/svg+xml

DOI:

https://doi.org/10.31548/energiya2022.03.109

Abstract

One the effective technical methods of monitoring the condition electric motors is a means of measuring and controlling the amount  leakage current, which characterizes the state of insulation of the electric motor. The use of more advanced devices that can not only record but also predict the achievement dangerous values leakage current, makes it possible to warn and inform in advance about the possible danger to staff, reduce downtime and allows maintenance, repair or replacement motors in the technological pause without waiting for their complete rejection. The neural networks used to predict the reliability electric motors have the form a mathematical model of parallel computing, which consists simple processor elements that interact with each other and are called artificial neurons.

The purpose of the study is to synthesize the neural network on the basis selected technological parameters and check its technological acceptability for predicting the leakage current of the motor.

The synthesized neural network according to the technological parameters should be the basis for building a system for predicting the leakage current of the electric motor according to the technological parameters. The prediction system based on the neural network on technological parameters also includes means of measuring technological parameters, parameters of motor operation and database. The key decision in such a system is made by man.

Key words: leakage current, technological parameters, neural network

References

Monakov V. K. (2007). UZO. Teoriya i praktika [RCD. Theory and practice]. Moskow: ZAO «Energoservis», 368.

Gerasymenko, V., Kozyrskyi, V., Maiborodina, N., Kovalov, O. (2019). Mathematical Model Changing the Value of the Process of Leakage Current in 0.38 kV Networks. Modern Development Paths of Agricultural Production. Trends and Innovations. Cham: Springer International Publishing, 339 – 348.

Shtepan, F. (2004). Ustroystva zashchitnogo otklyucheniya, upravlyayem·yye differentsial'nym tokom [Residual Current Controlled Residual Current Devices]. Praga, 90.

Gerasymenko, V. P. (2020). Intelektualna systema kontroliu ta prohnozuvannia velychyny strumu vytoku elektroobladnannia ustanovok dlia teplovoi obrobky i sushinnia zernovoi masy [Intelligent control system and prediction of the amount of leakage current of electrical equipment for heat treatment and drying of grain mass]. Enerhetyka i avtomatyka, 6, 109 – 117.

Zagirnyak, M., Prus, V., Somka, O. (2015). Reliability Models of Electric Machines with Structural Defects Proceedigs 2015 16th International Conference on “Computational Problems of Electrical Engineering” CPEE–2015. Lviv, 249-251.

Kondratenko, I. P., Zaiets, N. A., Shtepa, V. M. (2020). Naukovi osnovy keruvannia elektrotekhnichnymy kompleksamy neperervnykh vyrobnytstv iz prohnozuvanniam neshtatnykh sytuatsii: monohrafyia [Scientific bases of management of electrotechnical complexes of continuous productions with forecasting of abnormal situations: monograph]. Kyiv: Printeko, 256.

Gerasymenko. V. P. (2020). Aparatno-prohramna realizatsiia intelektualnoi komp’iuterno-intehrovanoi systemy kontroliu ta prohnozuvannia velychyny strumu vytoku elektroobladnannia tvarynnytskoho prymishchennia. [Hardware and software implementation of intelligent computer-integrated control system and prediction of leakage current of electrical equipment of livestock premises]. Enerhetyka i avtomatyka, 2, 77 – 85.

Lysenko. V. P., Reshetiuk, V. M., Shtepa, V. M., Zaiets, N. A. (2014). Systemy shtuchnoho intelektu: nechitka lohika, neironni merezhi, nechitki neironni merezhi, henetychnyi alhorytm [Artificial intelligence systems: fuzzy logic, neural networks, fuzzy neural networks, genetic algorithm]. Kyiv, 336.

Gritsenko, N. G., Zayets, N. A., Smityukh, Y. V. (2017). Intellektual'naya sistema upravleniya protsessom rektifikatsii s prognozirovaniyem neshtatnykh situatsiy [Intelligent rectification process control system with emergency situations forecasting]. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta, 4, 70–73.

Published

2022-08-29

Issue

Section

Статті