Modernization of the battery ventilation system based on new technologies

Authors

  • V. Trokhaniak National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • V. Trush National University of Life and Environmental Sciences of Ukraine image/svg+xml

DOI:

https://doi.org/10.31548/energiya2018.05.136

Abstract

This article presents the idea of modernizing ventilation systems to maintain microclimate in poultry houses.

Supporting the necessary microclimate is a necessary factor for increasing productivity. At the same time, an important problem is the search for new approaches and principles for solving the problem of cooling and heating of tidal air of poultry houses in the summer and winter. This problem is especially important due to the decrease in the productivity of the poultry farm due to the imperfection of existing microclimate systems in the summer, in the presence of high temperature and humidity of external air.

The purpose of which is the development and numerical modeling of the shell and tube heat exchanger of the new design, as the main element of the ventilation system.

Numerical simulation of hydrodynamic processes and processes of heat transfer in channels with a compact placement of tube beams is made. For this purpose, the CFD modeling method was used and the ANSYS Fluent program was applied. The basis of the mathematical model is the Navier-Stokes equation, the energy conservation equation for convective currents and the continuity equation. In the calculations a standard k-ε turbulence model was used.

In all calculations, the volume flow of air is 86392 m3 / h. The heat carrier has been selected air with a temperature of +40 0С at the inlet, which flows in the channels for cooling external heated air in the poultry house in the summer period of the year, where as the cooler is used water underground wells. In the soybean, cold water moving inside the pipes, which has an incoming temperature of +10 0С. The layout of the heat carrier movement is cross-linked.

The work looks at the shell and tube heat exchanger with a rectangular cross section in the transverse flow of pipe beams. The geometry of the pipes with diameters d =10 mmis peculiar, which differs from the traditional chess, corridor and compact beams. Neighboring pipes in such close beams are displaced one relative to the other at a distance of1 mm. Moreover, we consider three types of beam construction, in which there is a displacement of pipes in a transverse direction along the entire length of the tube beam at10 mm,12 mmand15 mm.

Computer-aided mathematical modeling of heat and mass transfer processes in tubes of different geometries with compact placement of pipes using the ANSYS Fluent program complex was carried out. The conditions of the hydrodynamic flow in the channels were analyzed and estimates of the heat transfer intensity between the hot and cold coolant through the wall separating them. The most effective heat transfer surfaces have been determined and the promise of application of the proposed conduits of the beams of pipes in the design of heat exchangers of various applications is shown.

Computer simulation gives an opportunity to analyze the conditions of hydrodynamic flow and heat transfer in the studied channels. The pressure drop reaches up to 700 Pa, the output temperature to +24 oC, which fully complies with the technical design standards. However, as in each system there is a drawback, and this is the financial cost of purchasing and cutting pipes, welding TA. Table 3 shows that for the manufacture of such a TA, 6120 m of pipe is required. Such expenses justify themselves by increasing the weight of poultry in the summer period of the year and reducing the use of gas in the winter period of the year.

Keywords: heat exchanger, numerical simulation, heat-mass transfer, tube bundle, inter-pipe channels

References

Horobets V. H., Trokhaniak V. I. (2015). Kompiuterne matematychne modeliuvannia protsesiv teplo- i masoperenosu pry ventyliatsii povitria v ptakhivnychykh prymishchenniakh [Computer mathematical modeling of heat and mass transfer of air ventilation in poultry houses]. Naukovyi visnyk Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu. №5. Rezhym dostupu do resursu: http://nauka.tsatu.edu.ua/e-journals-tdatu/pdf5t1/24.pdf.

Horobets V. H., Trokhaniak V. I. (2013). Matematychne modeliuvannia protsesiv hidrodynamiky i teploobminu v okholodzhuvachakh povitria ptakhivnychykh prymishchen [Mathematical modeling of processes of hydrodynamics and heat-exchange processes in air coolers of poultry houses] Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK». №184(2), 101–110.

Horobets V. H., Trokhaniak V. Y. (2015). Kompiuternoe matematycheskoe modelyrovanye protsessov teplo- y massoperenosa pry ventyliatsyy vozdukha v ptytsevodcheskykh pomeshchenyiakh [Computer mathematical modeling of heat and mass transfer of air ventilation in poultry houses]. Vestnyk Vserossyiskoho nauchno-yssledovatelskoho ynstytuta elektryfykatsyy selskoho khoziaistva. №4(20), 85–90.

Horobets V. H. Trokhaniak V. I., Bohdan Yu. O. (2015). Eksperymentalne doslidzhennia okholodzhennia pryplyvnoho povitria u ptakhivnychykh prymishchenniakh [Experimental study of cooling air supply poultry premises]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK». 224, 204–208.

Gorobets V. G., Trokhaniak V. I., Antypov I. O., Bohdan Yu. O. (2018). The numerical simulation of heat and mass transfer processes in tunneling air ventilation system in poultry houses, INMATEH: Agricultural engineering, 55(2), 87–96.

Horobets V. H., Trokhaniak V. Y. (2017). Energoefekty`vna sy`stema pidtry`mannya mikroklimatu v ptaxivny`chy`x pry`mishhennyax [Energy efficient system maintenance microclimate in poultry premises]. Кyiv: «PC «Коmprint», 194.

Zhukauskas A. A. (1982). Konvektyvnui perenos v teploobmennykakh [Convective transfer in heat exchangers]. Moskow: Nauka, 472.

Horobets V. H. (2010). Teplohidravlichna efektyvnist poverkhon z intensyfikatoramy teploobminu ta orebrenniam [Teplohidraulicheskoe efficiency of surfaces with intensifiers of heat exchange and sharpening]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK», №148, 46–56.

Khalatov A. A., Onyshchenko V. N., Borysov Y. Y. (2007). Analohyia perenosa teplotы y kolychestva dvyzhenyia v kanalakh s poverkhnostiamy heneratoramy vykhrei [An analogy of heat transfer and momentum in channels with surfaces by vortex generators]. Dokladu NAN Ukraynu, №6 70–75.

Horobets V. H., Trokhaniak V. I. (2014). Modeliuvannia protsesiv perenosu ta teplohidravlichna efektyvnist kozhukhotrubnoho teploobminnyka z kompaktnym roztashuvanniam puchkiv trub [The heat exchanger, tube bundle, thermal-hydraulic performance, mathematical modeling, flow rate, hydraulic losses, temperature]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK». №194(2), 147–155.

Trokhaniak V. Y., Bohdan Yu. A. (2015). Otsenka teplohydravlycheskoi еffektyvnosty kozhukhotrubnoho teploobmennoho apparata s kompaktnum razmeshchenyem trub v puchkakh na osnove kompiuternoho chyslennoho modelyrovanyia protsessov teplomassoperenosa [Evaluating of thermal-hydraulic efficiency shell-and-tube heat exchanger with the compact arrangement of the tube bundles on the basis of the computer numerical simulations of process of heat and mass transfer]. APRIORI. Seryia «Estestvennыe y tekhnycheskye nauky». №6. Rezhym dostupa k resursu: http://apriori-journal.ru/seria2/6-2015/Trohanyak-Bogdan2.pdf.

Trokhaniak V. I. (2015). Vyznachennia koefitsiienta teploviddachi pry chyselnomu modeliuvanni trubnoho puchka [Definition of coefficient of heat transfer numerical simulation tube bundle]. Pratsi Tavriiskoho derzhavnoho ahrotekhnolohichnoho universytetu. №15(2), 332–337.

Horobets V. H., Trokhaniak V. I. (2015). Eksperymentalne doslidzhennia teploobminnoho aparata novoi konstruktsii [Experimental study heat exchanger new design]. Enerhetyka i avtomatyka. №4. Rezhym dostupu do resursu:

http://journals.nubip.edu.ua/index.php/Energiya/article/viewFile/5247/5160.

Horobets V. H., Bohdan Yu. O., Trokhaniak V. I. (2017). Teploobminne obladnannia dlia koheneratsiinykh ustanovok [Heat-exchange equipment for cogeneration plants]. Кyiv: «PC «Коmprint», 203.

Trokhaniak V. I., Antipov I. O., Bohdan Yu. O. (2018). Rozrobka ta chyselne modeliuvannia teploobminnoho obladnannia novoi konstruktsii dlia system pidtrymannia mikroklimatu u ptashnykakh [Development and numerical simulation of new design heat exchange equipment for microclimate maintenance systems in poultry houses]. Naukovyi zhurnal KhNTUSH imeni Petra Vasylenka «Tekhnichnyi servis ahropromyslovoho, lisovoho ta transportnoho kompleksu», №12, 50–58.

Trokhaniak V. I., Antipov I. O., Bohdan Yu. O. (2018). Rozrobka ta chyselne modeliuvannia teploobminnoho obladnannia novoi konstruktsii dlia system pidtrymannia mikroklimatu u ptashnykakh [Development and numerical simulation of new design heat exchange equipment for microclimate maintenance systems in poultry houses]. Naukovyi zhurnal KhNTUSH imeni Petra Vasylenka «Inzheneriia pryrodokorystuvannia», №1(9), 48–56.

Trokhaniak V. I. (2018). Chyselne modeliuvannia teploobminnoho aparata dlia riznykh system ventyliatsii [Numerical modeling of heat exchanger for various ventilation system]. Enerhetyka i avtomatyka. №3. Rezhym dostupu do resursu: http://journals.nubip.edu.ua/index.php/Energiya/article/view/10905/9548.

Trokhaniak V. I. (2015). Pobudova sitky ANSYS Meshing dlia CFD modelei metodom kintsevykh elementiv [Construction mesh in ANSYS Meshing models for CFD finite elements method]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia «Tekhnika ta enerhetyka APK», №209(2), 244–249.

Trokhaniak V. I., Bohdan Yu. O. (2015). Zastosuvannia metodu kintsevykh elementiv pry pobudovi sitky v Ansys Meshing dlia CFD modelei [The finite element method in making up meshes in ANSYS Meshing for CFD models]. Visnyk Pryazovskoho derzhavnoho tekhnichnoho universytetu. Seriia «Tekhnichni nauky», №30(2), 181–189.

Normы tekhnolohycheskoho proektyrovanyia ptytsevodcheskykh predpryiatyi. NTP-APK 1.10.05.001-01(vzamen RNTP 4-93). – [Data vvedenyia 2002-01-03]. – Odobrenu NTS Mynselkhoza Rossyy (protokol ot 03.08.01 № 23).

Published

2018-11-15

Issue

Section

Статті