Coherent and monochromatic irradiation changes the erythrocyte hemolysis time and the speed of the ion counter transport through the erythrocyte membrane

Authors

  • O. B. Almazova National Technical University "Kharkiv Polytechnic Institute" image/svg+xml
  • M. L. Lysychenko Kharkiv Petrо Vasilenko National Technical University of Agriculture , Харківський національний технічний університет сільського господарства імені Петра Василенка

DOI:

https://doi.org/10.31548/energiya2020.03.109

Abstract

The erythrocytes of human blood were sequentially irradiated with a low-intensity laser (λ = 640 nm), a violet LED (λ = 400 nm), a green LED (λ = 540 nm), and a yellow LED (λ = 592 nm). The method of acid (chemical) erythrograms and the method of counter ion transport compared the kinetic characteristics in irradiated and unirradiated blood samples.

Received: - by the method of acid erythrograms it was found that in the irradiated blood samples there is a decrease in the time of hemolysis;

- low intensity laser radiation, as well as the emission of LEDs, increase the rate of counter ion transport through red blood cells.

- a decrease in the time of hemolysis and an increase in the rate of  counter ion transport of irradiated blood samples is due to a decrease in the "effective" thickness of the near-membrane diffusion layer - an immiscible layer of water adjoined to the erythrocyte membrane.

A decrease in the "effective” thickness of the near-membrane water layer (minimal in the wavelength range of 570-590 nm and 630-640 nm) changes the rate of metabolic processes in the "cell - intercellular medium" system, changing the mode of cell functioning. The altered mode of functioning is a biological response to light radiation. Red blood cells with an altered mode of functioning are signals - stimuli that cause the body to mobilize resources to fight pathology. These circumstances can predict the creation of a universal phototherapeutic equipment for extracorporeal blood irradiation based on light-emitting diodes with certain exposure parameters.

Key words: erythrocyte, blood samples irradiated with a low-intensity laser, irradiated with LEDs, acid (chemical) erythrograms, near-membrane diffusion layer

References

Almazova, E. B., Yemets, B. G. (2008). O miekhanizme vliianiia izluchieniia gazorazriadnoi rtutnoi ultrafiolietovoi lampy na tolshchinu primiembrannogo vodnogo sloia eritrotsitov chieovieka. Biofizychnyi visnyc [On the mechanism of the influence of radiation from a gas-discharge mercury ultraviolet lamp on the thickness of a near-membrane water layer of human red blood cells], 21(2), 88-94.

Builin, V. A., Briekhov Ye. I., Lariushin A. I. (2002). Laziero- i svietotierapiia oblitieriruiushchikh zabolievanii nizhnikh koniechnostiei [Laser and light therapy of obliterating diseases of the lower extremities]. Laziernaia mieditsina, 6 (3), 4 - 6.

Vasiliev, N. E. (2000). Laziernaia mieditsina [Laser medicine]. Vol. 3 (3-4), 16-20.

https://doi.org/10.1159/000051326

Yemets, B. G. (2004). Effiekty vzaimodieistviia nizkointiensivnykh eliektromagnitnykh voln s nanorazmiernymi gazovymi vkliuchieniiami v zhidkikh sriedakh [Effects of the interaction of low-intensity electromagnetic waves with nanoscale gas inclusions in liquid media]. Thesis for the degree of Doctor of Physics and Mathematics. Kharkov, 336.

Karu, T. Y. (2000). Piervichnyie I vtorichnyie klietochnyie miekhanizmy laziernoi tierapii. Nizkointensivnaia laziernaia tierapiia [Primary and secondary cellular mechanisms of laser therapy. Low-intensity laser therapy]. Moskow: TOO «Firma «Tiekhnika», 71-94.

Kotyk, A., Janacek, K. (1980). Miembrannyi transport [Membrane transport]. Moskow: Mir, 338.

Terskov, I. A., Gitielzon, I. I. (1957). Mietod khimichieskikh (kislotnykh) eritrogramm [The method of chemical (acid) erythrograms]. Biofizika, 2 (2), 259-266.

Tolstykh, P. A., Karaboyev, U. G., Shekhter, A. M. (2001). Laziernaia mieditsina, 5 (2), 8-13.

Published

2020-11-12

Issue

Section

Статті