Automated planning of graduality assembly

Authors

  • D. Proskurenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
  • O. Tretyak National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
  • M. Demchenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
  • M. Filippova National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

DOI:

https://doi.org/10.31548/energiya2021.05.028

Abstract

Modern industrial production requires the improvement of assembly processes, and thus increase the level of automated intelligent sequence planning. Therefore, researches in the field of automation of the sequence of assembly of products in industries are relevant at this time. In today's world there is a need to develop complex, accurate products. Problems are created in industries due to the reduction of the life cycle of products. There is a need to study the problem of assembly planning to achieve the goal of practical implementation and standardization of assembly plans. Creating graphs of the addition process is one of the problems. The assembly planning system can reduce human intervention in the process and reduce computational effort. The finished assembly contains many components that can be assembled using many sequences. A review of the methods from the literature showed that although these methods increase the automation level, they still cannot be applied to actual production because they do not take into account the experience and knowledge that can play a major role in planning and are of great value. Assembly planning, relationship charts, priority charts. Improving the assembly planning system to create a communication schedule and an assembly priority schedule was proposed. The advanced system will be used to generate possible assembly sequences with subassembly identification. A system has been developed to create alternative possible assembly sequences that can be used by component part / product designers in the early stages. A system capable of generating assembly sequences for simultaneous assembly of multiple parts has been proposed. Conclusions and work results can be applied used and improved for more productive product development by designers in the early stages and faster assembly of products in enterprises. The paper did not consider practical limitations (gravity) and irreversible assembly operations, such as permanent fastening, welding etc.

Кey words: assembly, blocking graph, relation graph, sequence

References

Boothroyd, G., Dewhurst, P., & Knight, W. A. (2010). Product design for manufacture and assembly. Boca Raton, Fl: Crc Press.

https://doi.org/10.1201/9781420089288

Homem de Mello, L. S., & Sanderson, A. C. (1991). Representations of mechanical assembly sequences. IEEE Transactions on Robotics and Automation, 7(2), 211-227. https://doi.org/10.1109/70.75904

https://doi.org/10.1109/70.75904

Santochi M., and Dini G. (1992). Computer-aided planning of assembly operations: the selection of the assembly sequences. Int. J. Robot. Comput. Integr. Manuf., 9(6), 439-446.

Ko, H., & Lee, K. (1997). Automatic assembling procedure generation from mating conditions. Computer-Aided Design, 19(1), 3-10. https://doi.org/10.1016/0010-4485(87)90146-1

https://doi.org/10.1016/0010-4485(87)90146-1

BEN-ARIEH, D., & KRAMER, B. (1994). Computer-aided process planning for assembly: generation of assembly operations sequence. International Journal of Production Research, 32(3), 643-656. https://doi.org/10.1080/00207549408956957

https://doi.org/10.1080/00207549408956957

Laperrière, L., & ElMaraghy, H. A. (1996). GAPP: A generative assembly process planner. Journal of Manufacturing Systems, 15(4), 282-293. https://doi.org/10.1016/0278-6125(96)84553-5

https://doi.org/10.1016/0278-6125(96)84553-5

Gottipolu, R. B., & Ghosh, K. (2003). A simplified and efficient representation for evaluation and selection of assembly sequences. Computers in Industry, 50(3), 251-264. https://doi.org/10.1016/s0166-3615(03)00015-0

https://doi.org/10.1016/S0166-3615(03)00015-0

Zhang, Y. Z., Ni, J., Lin, Z. Q., & Lai, X. M. (2002). Automated sequencing and sub-assembly detection in automobile body assembly planning. Journal of Materials Processing Technology, 129(1-3), 490-494. https://doi.org/10.1016/s0924-0136(02)00621-0

https://doi.org/10.1016/S0924-0136(02)00621-0

Halperin, D., Latombe, J.-C. ., & Wilson, R. H. (2000). A General Framework for Assembly Planning: The Motion Space Approach. Algorithmica, 26(3-4), 577-601. https://doi.org/10.1007/s004539910025

https://doi.org/10.1007/s004539910025

Woo, T. C., & Dutta, D. (1991). Automatic Disassembly and Total Ordering in Three Dimensions. Journal of Engineering for Industry, 113(2), 207-213. https://doi.org/10.1115/1.2899679

https://doi.org/10.1115/1.2899679

Lee Y. Q., and Kumara S. (1992). Individual and group disassembly sequence generation through freedom and interference spaces. Journal of Design and Manufacturing., 2, 143-154.

Wilson, R. H., & Latombe, J.-C. (1994). Geometric reasoning about mechanical assembly. Artificial Intelligence, 71(2), 371-396. https://doi.org/10.1016/0004-3702(94)90048-5

https://doi.org/10.1016/0004-3702(94)90048-5

Romney B., Godard C., Goldwasser M., Ramkumar G. (1995). An efficient system for geometric assembly sequence generation and evaluation. Comput. Eng. 699-712.

https://doi.org/10.1115/CIE1995-0800

Su, Q. (2009). A hierarchical approach on assembly sequence planning and optimal sequences analyzing. Robotics and Computer-Integrated Manufacturing, 25(1), 224-234. https://doi.org/10.1016/j.rcim.2007.11.006

https://doi.org/10.1016/j.rcim.2007.11.006

Lee, H.-R., & Gemmill, D. D. (2001). Improved methods of assembly sequence determination for automatic assembly systems. European Journal of Operational Research, 131(3), 611-621. https://doi.org/10.1016/s0377-2217(00)00103-x

https://doi.org/10.1016/S0377-2217(00)00103-X

Jin, S., Cai, W., Lai, X., & Lin, Z. (2009). Design automation and optimization of assembly sequences for complex mechanical systems. The International Journal of Advanced Manufacturing Technology, 48(9-12), 1045-1059. https://doi.org/10.1007/s00170-009-2361-8

https://doi.org/10.1007/s00170-009-2361-8

Homem de Mello, L. S., & Sanderson, A. C. (1990). AND/OR graph representation of assembly plans. IEEE Transactions on Robotics and Automation, 6(2), 188-199. https://doi.org/10.1109/70.54734

https://doi.org/10.1109/70.54734

Kang, J.-G., Lee, D.-H., Xirouchakis, P., & Persson, J.-G. (2001). Parallel Disassembly Sequencing with Sequence-Dependent Operation Times. CIRP Annals, 50(1), 343-346. https://doi.org/10.1016/s0007-8506(07)62136-2

https://doi.org/10.1016/S0007-8506(07)62136-2

Ong, N. S., & Wong, Y. C. (1999). Automatic Subassembly Detection from a Product Model for Disassembly Sequence Generation. The International Journal of Advanced Manufacturing Technology, 15(6), 425-431. https://doi.org/10.1007/s001700050086

https://doi.org/10.1007/s001700050086

Filippova M. V., Visloukh S. P. (2006). Metodika avtomatizovanoho proektuvannya tekhnolohiyi skladannya virobiv priladobuduvannya [Methods of automated design of technology for assembling instrumentation products]. Visnik NTUU «KPI». Kyiv, 111-117.

Antonyuk V. S., Vysloukh S. P., Filippova M. V. (2007). Avtomatizirovannoe proektirovanie tekhnolohicheskikh protsessov sborki izdeliy priborostroeniya [Computer-aided design of technological processes for assembling instrumentation products]. Sborka v mashinostroenie i priborostroenii. 6(3). 3-5.

Published

2021-12-13

Issue

Section

Статті