Study of changes in land cover categories in Ukraine based on remote sensing data
DOI:
https://doi.org/10.31548/zemleustriy2023.01.12Keywords:
Land cover change, Google Earth Engine, land transfer matrix.Abstract
Land cover change has been a hot area of research on global ecological change and sustainable development due to its importance in global ecological change. Understanding land cover change trends is the basis for rational planning and management of land resources and is of important value for achieving land protection and sustainable development. Land transfer matrix has great value in the research of land cover change, its results are not disturbed by the land cover category and quantity, and the data can be analyzed in different time periods according to the demand. However, the land transfer matrix produced by traditional methods has the problems of long production period and certain requirements for hardware performance. In this paper uses Google Earth Engine to obtain the public land cover dataset of Ukraine and uses raster calculation to quickly construct the land transfer matrix. The matrix data show that the land cover change in Ukraine from 2000-2015 is modest, with a total change of 2.244%. The proportion of cropland decreased and the proportion of Urban and Built-up Lands increased. The results show that the methods can quickly and effectively obtain data on land cover change in the study area and provide assistance in analyzing trends and patterns of land cover change.
Keywords: Land cover change, Google Earth Engine, land transfer matrix
References
Fischer, G., & Sun, L. (2001). Model based analysis of future land-use development in China. Agriculture, Ecosystems &Amp; Environment, 85(1–3), 163–176. DOI: https://doi.org/10.1016/s0167-8809(01)00182-7
De Freitas, M. W. D., Muñoz, P., Dos Santos, J. R., & Alves, D. S. (2018). Land use and cover change modelling and scenarios in the Upper Uruguay Basin (Brazil). Ecological Modelling, 384, 128–144. DOI: https://doi.org/10.1016/j.ecolmodel.2018.06.009
Zhou, Y., Li, X., & Liu, Y. (2020). Land use change and driving factors in rural China during the period 1995-2015. Land Use Policy, 99, 105048. DOI: https://doi.org/10.1016/j.landusepol.2020.105048
Cui, X., Liu, C., Shan, L., Lin, J., Zhang, J., Jiang, Y., & Zhang, G. (2021). Spatial-Temporal Responses of Ecosystem Services to Land Use Transformation Driven by Rapid Urbanization: A Case Study of Hubei Province, China. International Journal of Environmental Research and Public Health, 19(1), 178. DOI: https://doi.org/10.3390/ijerph19010178
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., & Merchant, J. W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6–7), 1303–1330. DOI: https://doi.org/10.1080/014311600210191
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168–182. DOI: https://doi.org/10.1016/j.rse.2009.08.016
Bartholomé, E., & Belward, A. S. (2005). GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9), 1959–1977. DOI: https://doi.org/10.1080/01431160412331291297
Manandhar, R., Odeh, I. O., & Pontius, R. G. (2010). Analysis of twenty years of categorical land transitions in the Lower Hunter of New South Wales, Australia. Agriculture, Ecosystems &Amp; Environment, 135(4), 336–346. DOI: https://doi.org/10.1016/j.agee.2009.10.016
Mallinis, G., Koutsias, N., & Arianoutsou, M. (2014). Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece. Science of the Total Environment, 490, 262–278. DOI: https://doi.org/10.1016/j.scitotenv.2014.04.129
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. DOI: https://doi.org/10.1016/j.rse.2017.06.031
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152–170. DOI: https://doi.org/10.1016/j.isprsjprs.2020.04.001
Phalke, A. R., Özdoğan, M., Thenkabail, P. S., Erickson, T., Gorelick, N., Yadav, K., & Congalton, R. G. (2020). Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 104–122. DOI: https://doi.org/10.1016/j.isprsjprs.2020.06.022
FAO GAUL 500m: Global Administrative Unit Layers 2015, First-Level Administrative Units. Available at : https://developers.google.com/earth-engine/
datasets/catalog/FAO_GAUL_SIMPLIFIED_500m_2015_level1
Xu X C,Li B J,Liu X P,Li X and Shi Q. (2021). Mapping annual global land cover changes at a 30 m resolution from 2000 to 2015. National Remote Sensing Bulletin, 25(9):1896-1916 . DOI: 10.11834/jrs.20211261. [In Chinese]
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., ... & Arino, O. (2021). ESA WorldCover 10 m 2020 v100. Available at : https://developers.google.com/earth-engine/datasets/catalog/
ESA_WorldCover_v100
Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., & Smets, B. (2020). Copernicus Global Land Cover Layers—Collection 2. Remote Sensing, 12(6), 1044. DOI: https://doi.org/10.3390/rs12061044
Friedl, M., Sulla-Menashe, D. (2022). MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC. Available at : https://developers.google.com/earth-engine/datasets/catalog/
MODIS_061_MCD12Q1
Pontius, R. G., Shusas, E., & McEachern, M. (2004). Detecting important categorical land changes while accounting for persistence. Agriculture, Ecosystems &Amp; Environment, 101(2–3), 251–268. DOI: https://doi.org/10.1016/j.agee.2003.09.008
LIANG, J., CHEN, J., TONG, D., & LI, X. (2022). Planning control over rural land transformation in Hong Kong: A remote sensing analysis of spatio-temporal land use change patterns. Land Use Policy, 119, 106159. DOI: https://doi.org/10.1016/j.landusepol.2022.106159
Gutiérrez Angonese, J., & Grau, H. R. (2014). Assessment of swaps and persistence in land cover changes in a subtropical periurban region, NW Argentina. Landscape and Urban Planning, 127, 83–93. DOI: https://doi.org/10.1016/j.landurbplan.2014.01.021
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20–22), 3761–3772. DOI: https://doi.org/10.1016/j.ecolmodel.2011.09.009
Ning, J., Liu, J., Kuang, W., Xu, X., Zhang, S., Yan, C., . . . Ning, J. (2018). Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. Journal of Geographical Sciences, 28(5), 547–562. DOI: https://doi.org/10.1007/s11442-018-1490-0
Braimoh, A. K. (2006). Random and systematic land-cover transitions in northern Ghana. Agriculture, Ecosystems &Amp; Environment, 113(1–4), 254–263. DOI: https://doi.org/10.1016/j.agee.2005.10.019
Kin, D., & Karpinskyi, Y. (2020). Peculiarities of the method of calculation feature’s geodetic area on the reference ellipsoid in GIS. GeoTerrace-2020 . Vol. 2020, No. 1, 1-5. EAGE Publications BV. DOI: https://doi.org/10.3997/2214-4609.20205757.
Solomianchuk, L. Yu. (2017). Analiz vikoristannya danih distancijnogo zonduvannya zemli v silskomu gospodarstvi. [Analysis of the use of remote sensing data in agriculture]. Engineering geodesy, 99.
Kohan, S. S. (2011). Doslidzhennya dinamiki vegetacijnih indeksiv dlya ocinyuvannya stanu silskogospodarskih kultur na osnovi danih IRS-1D LISS-III [Research on the dynamics of vegetation indices for assessing the condition of agricultural crops based on IRS-1D LISS-ІІІ data]. Journal of Geodesy and Cartography, 4, 20-24.
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).