Intelligent technologies in electronic geodetic systems for public spatial management: evolution from automation to digital ethical standards
DOI:
https://doi.org/10.31548/zemleustriy2025.04.09Keywords:
intellectualization, artificial intelligence (AI), electronic geodetic instruments (EGI), GIS environment, spatial management systems, object detection, GNSS correctionAbstract
The article is devoted to the intellectualization of electronic geodetic instruments (EGI) and the development of conceptual foundations for integrating artificial intelligence (AI) technologies into the geoinformation environment (GIS) to enhance the efficiency of spatial management systems. The study presents a developed architectural model of an intelligent spatial management system, which includes the interaction of electronic instruments, sensor modules, GIS platforms, and analytical AI services. The proposed concept of EGI intellectualization is based on three main vectors: autonomy of the measurement process (through machine learning, ML, for object recognition and self-diagnostics), adaptability to environmental conditions (via environmental impact correction and noise reduction), and integrativity with GIS. The research describes the use of AI methods, including deep neural networks (YOLO, Mask R-CNN, U-Net, PointNet) for automatic detection and classification of objects in images and point clouds, as well as for real-time evaluation and correction of GNSS errors using neuro-Kalman filters. The practical directions of model implementation include automated monitoring of engineering structure deformations and intelligent UAV data processing for updating topographic maps. According to the findings, the phased integration of AI transforms EGI into intelligent sensors capable of autonomously assessing data quality and interacting with GIS, thereby providing a reliable foundation for smart cities and sustainable territorial development.
Keywords: intellectualization, artificial intelligence (AI), electronic geodetic instruments (EGI), GIS environment, spatial management systems, object detection, GNSS correction.
References
1. Bill, R., Blankenbach, J., Breunig, M., Haunert, J. H., & Heipke, C. (2022). Geospatial information research: State of the art, case studies and future perspectives. J. Photogramm. Remote Sens. Geoinform. Sci., 90(4), 349–389. https://doi.org/10.1007/s41064-022-00217-9
2. Rudewicz, J. (2024). Theoretical insights into artificial intelligence applications in human geography and spatial management (GeoAI). European Research Studies Journal, 27(4), 973–984.
3. Tuia, D., Roscher, R., & Jacobs, N. (2021). Towards a collective agenda on AI for Earth science data analysis. IEEE Geoscience and Remote Sensing Magazine, 9(2), 88–104. https://doi.org/10.1109/MGRS.2020.3043504
4. Artemov, V., Movchan, T., Bakhchevan, E., & Danko, T. (2020). Pryntsypy tsyfrovoi transformatsii i vprovadzhennia yii v heodezii ta zemleustrii [Principles of digital transformation and its implementation in geodesy and land management]. Ahrarnyi visnyk Prychornomoria, 96, 129–138.
5. Maksymenko, M. A., & Bondar, A. V. (2025). Vykorystannia HIS u inzhenerno-heodezychnykh vyshukuvanniakh pry proektuvanni dorih [Use of GIS in engineering and geodetic surveys for road design]. Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi, 38(1), 129–135. https://doi.org/10.31649/2311-1429-2025-1-129-135.
6. Stupen, O. I., Prokopenko, N. I., & Shevchuk, S. M. (2025). Tsyfrova transformatsiia systemy zemleustroiu: avtomatyzatsiia upravlinskykh protsesiv u sferi vykorystannia ta okhorony zemelnykh resursiv [Digital transformation of the land management system: automation of management processes in the field of land use and protection]. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 212, 172–184. https://doi.org/10.18664/1994-7852.212.2025.336296
7. Braslavska, O. V. (2025). HIS-tekhnolohii ta dystantsiine zonduvannia u monitorynhu zmin zemlekorystuvannia [GIS technologies and remote sensing in monitoring land use changes]. Mistobuduvannia ta terytorialne planuvannia, 89, 472–487. https://doi.org/10.32347/2076-815X.2025.89.472-487
8. Borovyi, V. O., Braslavska, O. V., & Rozhi, T. A. (2025). Intehratsiia analohovoho ta tsyfrovoho znimannia v systemakh zemleustroiu: novi mozhlyvosti dlia heodezychnykh doslidzhen [Integration of analog and digital imaging in land management systems: new opportunities for geodetic research]. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho, 212, 195–207. https://doi.org/10.18664/1994-7852.212.2025.336377
9. Lazorenko, N. Yu. (2024). Doslidzhennia zastosuvannia shtuchnoho intelektu (GeoAI) dlia zavdan topohrafichnoho kartohrafuvannia [Study of artificial intelligence (GeoAI) application for topographic mapping tasks]. Prostorovyi rozvytok, 8, 430–443. https://doi.org/10.32347/2786-7269.2024.8.430-443
10. Makedon, V. V., & Bailova, O. O. (2023). Planuvannia i orhanizatsiia vprovadzhennia tsyfrovykh tekhnolohii v diialnist promyslovykh pidpryiemstv [Planning and organizing the implementation of digital technologies in the activities of industrial enterprises]. Naukovyi visnyk Khersonskoho derzhavnoho universytetu. Seriia “Ekonomichni nauky”, 47, 16–26. https://doi.org/10.32999/ksu2307-8030/2023-47-3
11. Tuia, D., Roscher, R., & Wegner, J. D. (2021). Toward a collective agenda on AI for Earth science data analysis. IEEE Geoscience and Remote Sensing, 10.
12. Hochmair, H. H., Juhász, L., & Li, H. (2025). Advancing AI-driven geospatial analysis and data generation: Methods, applications and future directions. ISPRS International Journal of Geo-Information, 14(2), 56. https://doi.org/10.3390/ijgi14020056
13. Reiterer, A., & Egly, U. (2010). Application of artificial intelligence in geodesy: A review of theoretical foundations and practical examples. Journal of Applied Geodesy, 4, 201–217. https://doi.org/10.1515/JAG.2010.020
14. Marchuk, D. (2023). Analiz suchasnykh alhorytmiv vyiavlennia i rozpiznavannia obiektiv z videopotoku dlia system upravlinnia parkuvanniam v realnomu chasi [Analysis of modern algorithms for object detection and recognition from video streams for real-time parking management systems]. Visnyk Khmelnytskoho natsionalnoho universytetu, 3(321), 17–23.
15. Bello, S. A., Yu, S., Wang, C., Adam, J. M., & Li, J. (2020). Review: Deep learning on 3D point clouds. Remote Sensing, 12, 1729. https://doi.org/10.3390/rs12111729
16. Elango, A., & Landry, R. J. (2024). XAI GNSS–A comprehensive study on signal quality assessment of GNSS disruptions using explainable AI technique. Sensors, 24, 8039. https://doi.org/10.3390/s24248039
17. Aljamal, M. A., Abdelghaffar, H. M., & Rakha, H. A. (2019). Developing a neural–Kalman filtering approach for estimating traffic stream density using probe vehicle data. Sensors, 19, 4325. https://doi.org/10.3390/s19194325
18. Shi, J., Pan, Z., Jiang, L., & Zhai, X. (2023). An ontology-based methodology to establish city information model of digital twin city by merging BIM, GIS and IoT. Advanced Engineering Informatics, 57. https://doi.org/10.1016/j.aei.2023.102114
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Землеустрій, кадастр і моніторинг земель

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).