Genomodulation activity of Pseudomonas syrіngae pv. syrіngae і P. syringae pv. atrofaciens

Authors

  • L.M. Butsenko D.K. Zabolotny Institute of Microbiology and Virology of the NASU

DOI:

https://doi.org/10.31548/bio2019.03.003

Keywords:

phytopathogenic bacteria, promutagene, genomodulatory activity

Abstract

Certain types of bacteria can serve as a biological factor of mutagenesis and activate promutagens, which makes relevant studies of genomodulatory ability of phytopathogenic bacteria, which are widespread in agrophytocenoses. Determination of genemodulation activity and the ability to activate the known promutagen 3,3'-diaminobenzidine with phytopathogenic bacteria P. syringae pv. syringae and P. syringae pv. atrofaciens was performed in the Ames test. It has been established that phytopathogenic bacteria P. syringae pv. syringae and P. syringae pv. atrofaciens do not form exometabolites with mutagenic effects when cultured in laboratory conditions and do not activate promutagene 3,3'-diaminobenzidine.

Author Biography

L.M. Butsenko, D.K. Zabolotny Institute of Microbiology and Virology of the NASU

Старший науковий співробітник відділу фітопатогенних бактерій

References

Lukash, L. (2013). Regulation of mutagenesis by exogenous biological factors in the eukaryotic cell systems. Biopolym Cell, 29(4), 283-294.

https://doi.org/10.7124/bc.000823

Manova, V., Gruszka, D. (2015) DNA damage and repair in plants - from models to crops. Frontiers in Plant Science, 6, 885.

https://doi.org/10.3389/fpls.2015.00885

Aybeke, M. (2017). Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp. Microbiological Research, 201,46-51.

https://doi.org/10.1016/j.micres.2017.05.001

Song, J., Bent, A. (2014). Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathog, 10(4):e1004030. . eCollection 2014 Apr.,2014.

https://doi.org/10.1371/journal.ppat.1004030

Adris, P., Chung, K.-T. (2006). Metabolic activation of bladder procarcinogens, 2-aminofluorene, 4-aminobiphenyl, and benzidine by Pseudomonas aeruginosa and other human endogenous bacteria. Toxicol in vitro, 20,367-374.

https://doi.org/10.1016/j.tiv.2005.08.017

Adris, P., Lopez-Estraño, C., Chung, K. (2007). The metabolic activation of 2-aminofluorine, 4-aminobiphenyl, and benzidine by cytochrome P-450-107S1 of Pseudomonas aeruginosa. Toxicol In Vitro, 21(8), 1663-71.

https://doi.org/10.1016/j.tiv.2007.07.009

Pawlik, M., Piotrowska-Seget, Z. (2015). Endophytic bacteria associated with hieracium piloselloides: otential for hydrocarbon-utilizing and plant growth-promotion. J Toxicol Environ Health A, 78(13-14), 860-70. https://doi.org/10.1080/15287394.2015.1051200

Patyka, V., Pasichnyk, L., Gvozdyak, R., Petrychenko, V., Korniychuk, O., Kalinichenko, A. et al. (2017). Fitopatohenni bakterii. Metody doslidzhen. Monografiia. [Phytopathogenic bacteria. Research methods] T. 2. Vinnytsia: TOV Vingruk, 567.

Vijay, U., Gupta, S., Mathur, P., Suravajhala, P. and Bhatnagar, P. (2018). Microbial Mutagenicity Assay: Ames Test. Bio-protocol 8(6): e2763.

https://doi.org/10.21769/BioProtoc.2763

Martin, O., Frisan, T., Mihaljevic, B. (2018). Bacterial Genotoxins as the Interphase Between DNA Damage and Immune Response. In: Gopalakrishnakone P, Stiles B, Alape-Girón A, Dubreuil J, Mandal M. (eds) Microbial Toxins. Toxinology. Springer; 459.

https://doi.org/10.1007/978-94-007-6449-1_14

Chung, K., Chen, S., Claxton, L. (2006). Review of the Salmonella typhimurium mutagenicity of benzidine, benzidine analogues, and benzidine-based dyes. Mutat Res, 612(1),58-76.

https://doi.org/10.1016/j.mrrev.2005.08.001

Published

2019-08-23

Issue

Section

Biology