Predicting forest stand parameters using the k-NN approach

Authors

  • V. V. Myroniuk National University of Life and Environmental Sciences of Ukraine
  • А. М. Bilous National University of Life and Environmental Sciences of Ukraine
  • P. P. Diachuk National University of Life and Environmental Sciences of Ukraine

DOI:

https://doi.org/10.31548/forest2019.02.051

Abstract

Remote sensing (RS) data is a key source of auxiliary information on forest stand parameters used in forest inventory. Among the modern techniques that allow coupling ground truth and RS derived information, the nonparametric k-Nearest Neighbors (k-NN) approach has been widely used for imputing missing values in forest inventory data. In order to evaluate the effectiveness of the approach using different predictors and input parameters, we used experimental data collected in local forest inventory conducted in middle part of Kyiv region (Ukraine). The data consist of 141 sample plots distributed systematically within the forested area of about 56 km2. Sample trees were selected using two different approaches – using sampling with probability proportional to the tree sizes and stands density. As an auxiliary dataset, we incorporated three sources of spectral information that represents different types of RS: 1) the seasonal mosaics of Landsat 8 OLI imagery; 2) one scene of SPOT 7 image; 3) time series of PlanetScope observations. All spectral data were orthorectified and radiometrically calibrated to top of atmosphere reflectance. We concluded that the accuracy of prediction of basal areas for all types of RS is higher for angle-counting plots. We refer this fact to the technique of tree selection since trees of bigger sizes are likely selected by relascope. These trees reflect parameters of forest overstory scanned by RS sensors. Among used satellite imagery, dense time series of Earth observations showed better agreement between the reference and predicted values of basal area per hectare. Thus, we concluded that pixel size is less important in case of predicting forest parameters compared to the temporal resolution of RS data. According to our findings, the k = 1 implementation of the k-NN method works better when preservation of covariance between variables is important while increasing the k value reduces their ranges. It was found that random forest was the most accurate nearest neighbors search routine for the k-NN method.

Keywords: sample-based forest inventory, fixed-area plots, angle-count sampling, classification.

Author Biographies

V. V. Myroniuk, National University of Life and Environmental Sciences of Ukraine

докторант кафедри таксації лісу та лісового менеджменту

А. М. Bilous, National University of Life and Environmental Sciences of Ukraine

завідувач кафедри таксації лісу та лісового менеджменту

P. P. Diachuk, National University of Life and Environmental Sciences of Ukraine

аспірант кафедри таксації лісу та лісового менеджменту

References

Beaudoin, A., Bernier, P. Y., Guindon, L., Villemaire, P., Guo, X. J., Stinson, G., ... Hall, R. J. (2014). Mapping attributes of Canada's forests at moderate resolution through k NN and MODIS imagery. Canadian Journal of Forest Research, 44 (5), 521-532. https://doi.org/10.1139/cjfr-2013-0401

Bernier, P. Y., Daigle, G., Rivest, L.-P., Ung, C.-H., Labbé, F., Bergeron, C., & Patry, A. (2010). From plots to landscape: A k-NN-based method for estimating stand-level merchantable volume in the Province of Québec, Canada. The Forestry Chronicle, 86 (4), 461-468. https://doi.org/10.5558/tfc86461-4

Bilous, A., Myroniuk, V., Holiaka, D., Bilous, S., See, L., & Schepaschenko, D. (2017). Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine. Environmental Research Letters, 12 (10), 13. https://doi.org/10.1088/1748-9326/aa8352

Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5-32. https://doi.org/10.1023/A:1010933404324

Chirici, G., McRoberts, R. E., Fattorini, L., Mura, M., & Marchetti, M. (2016). Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework. Remote Sensing of Environment, 174, 1-9. https://doi.org/10.1016/j.rse.2015.11.010

Crookston, N. L., & Finley, A. O. (2008). yaImpute : An R Package for k NN Imputation. Journal of Statistical Software, 23 (10). https://doi.org/10.18637/jss.v023.i10

Franco-Lopez, H., Ek, A. R., & Bauer, M. E. (2001). Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment, 77 (3), 251-274. https://doi.org/10.1016/S0034-4257(01)00209-7

Haapanen, R., Ek, A. R., Bauer, M. E., & Finley, A. O. (2004). Delineation of forest/nonforest land use classes using nearest neighbor methods. Remote Sensing of Environment, 89 (3), 265-271. https://doi.org/10.1016/j.rse.2003.10.002

Hou, Z., McRoberts, R. E., Ståhl, G., Packalen, P., Greenberg, J. A., & Xu, Q. (2018). How much can natural resource inventory benefit from finer resolution auxiliary data? Remote Sensing of Environment, 209, 31-40. https://doi.org/10.1016/j.rse.2018.02.039

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112 (5), 2232-2245. https://doi.org/10.1016/j.rse.2007.10.009

Kirchhoefer, M., Schumacher, J., Adler, P., & Kändler, G. (2017). Considerations towards a Novel Approach for Integrating Angle-Count Sampling Data in Remote Sensing Based Forest Inventories. Forests, 8 (7), 239. https://doi.org/10.3390/f8070239

Latifi, H., Fassnacht, F. E., Hartig, F., Berger, C., Hernández, J., Corvalán, P., & Koch, B. (2015). Stratified aboveground forest biomass estimation by remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 38, 229-241. https://doi.org/10.1016/j.jag.2015.01.016

Maltamo, M., Korhonen, K., Packalen, P., Mehtatalo, L., & Suvanto, A. (2007). Testing the usability of truncated angle count sample plots as ground truth in airborne laser scanning-based forest inventories. Forestry, 80 (1), 73-81. https://doi.org/10.1093/forestry/cpl045

McRoberts, R. E. (2009a). A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes. Remote Sensing of Environment, 113 (3), 532-545. https://doi.org/10.1016/j.rse.2008.10.001

McRoberts, R. E. (2009b). Diagnostic tools for nearest neighbors techniques when used with satellite imagery. Remote Sensing of Environment, 113 (3), 489-499. https://doi.org/10.1016/j.rse.2008.06.015

McRoberts, R. E. (2012). Estimating forest attribute parameters for small areas using nearest neighbors techniques. Forest Ecology and Management, 272, 3-12. https://doi.org/10.1016/j.foreco.2011.06.039

McRoberts, R. E., Liknes, G. C., & Domke, G. M. (2014). Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation. Forest Ecology and Management, 331, 12-18. https://doi.org/10.1016/j.foreco.2014.07.025

McRoberts, R. E., Nelson, M. D., & Wendt, D. G. (2002). Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of Environment, 82 (2-3), 457-468. https://doi.org/10.1016/S0034-4257(02)00064-0

Mozgeris, G. (2008). Estimation and Use of Continuous Surfaces of Forest Parameters: Options for Lithuanian Forest Inventory. Baltic Forestry, 14 (2), 9.

Myroniuk, V. (2017). Variable selection in the context of forest cover mapping using seasonal Landsat mosaics. Scientific Herald of NULES of Ukraine, 278, 66-76 (in Ukrainian).

Myroniuk, V. (2018). Forest cover mapping using Landsat-based seasonal composited mosaics. Scientific Bulletin of NFWU of Ukraine, 28 (1), 28-33 (in Ukrainian). https://doi.org/10.15421/40280105

Ohmann, J. L., Gregory, M. J., & Roberts, H. M. (2014). Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. Remote Sensing of Environment, 151, 3-15. https://doi.org/10.1016/j.rse.2013.08.048

Packalén, P., Temesgen, H., & Maltamo, M. (2012). Variable selection strategies for nearest neighbor imputation methods used in remote sensing based forest inventory. Canadian Journal of Remote Sensing, 38 (5), 557-569. https://doi.org/10.5589/m12-046

Reese, H., Nilsson, M., Sandström, P., & Olsson, H. (2002). Applications using estimates of forest parameters derived from satellite and forest inventory data. Computers and Electronics in Agriculture, 37 (1-3), 37-55. https://doi.org/10.1016/S0168-1699(02)00118-7

Tomppo, E., & Halme, M. (2004). Using coarse scale forest variables as ancillary information and weighting of variables in k-N-N estimation: a genetic algorithm approach. Remote Sensing of Environment, 92 (1), 1-20. https://doi.org/10.1016/j.rse.2004.04.003

Tomppo, E., Kuusinen, N., Mäkisara, K., Katila, M., & McRoberts, R. E. (2017). Effects of field plot configurations on the uncertainties of ALS-assisted forest resource estimates. Scandinavian Journal of Forest Research, 32(6), 488-500. https://doi.org/10.1080/02827581.2016.1259425

Published

2019-06-24

Issue

Section

FORESTRY