Determination of the basic diversity metrics of radionuclide contaminated soils microbiomes

Authors

  • O. Pareniuk National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • I. Simutin National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • D. Samofalova Institute of Food Biotechnology and Genomics NAS of Ukraine , ДУ «Інститут харчової біотехнології та геноміки НАН України»

DOI:

https://doi.org/10.31548/bio2018.05.010

Abstract

The bioinformatic approaches to determine of the main ecological characteristics (alpha and beta diversity metrics) of microbiomes, obtained as a result of DNA sequencing of radionuclide contaminated substrates were analyzed. As a result of the microbioms alpha and beta analysis, using the QIIME software, it was shown that environment, formed in the 4th unit of ChNPP is suitable for future existence of a greater variety of microorganisms. A technique has been selected that provides the highest quality and reliability of the source data.

Keywords: soil microbiome, radionuclide pollution, bioinformatics methods

References

Pareniuk, O., Shavanova, K., Laceby, J. P., Illienko, V., Tytova, L., Levchuk, S., … Nanba, K. (2015). Modification of 137Cs transfer to rape (Brassica napus L.) phytomass under the influence of soil microorganisms. Journal of Environmental Radioactivity, 149, 73–80. https://doi.org/10.1016/j.jenvrad.2015.07.003

Parenyuk, O. Yu., Simutin, I. O., Samofalova, D. O., Ruban, Yu. V., Illyenko, V. V., Nesterova, N. G., & Gudkov, I. M. (2017). Pidxody` do in silico analizu metry`k riznomanittya mikrobiomu zabrudneny`x radionuklidamy` g`runtiv. Bioresursy` i Pry`rodokory`stuvannya, 9(5–6), 10–16.

S. Andrews. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. URL: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed 06.12.2018).

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303

Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2012). Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Microbiology, Chapter 1, Unit 1E.5. https://doi.org/10.1002/9780471729259.mc01e05s27

Pielou, E. C. (1975). Ecological diversity. New York: John Wiley & Sons, Ltd.

McMurdie, P. J., Holmes, S., Kindt, R., Legendre, P., & O’Hara, R. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217

Chao, A., Chiu, C.-H., & Hsieh, T. C. (2012). Proposing a resolution to debates on diversity partitioning. Ecology, 93(9), 2037–2051. https://doi.org/10.1890/11-1817.1

Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427–432. Retrieved from http://biocomparison.ucoz.ru/_ld/0/78_hill_obzor.pdf

Published

2018-12-29

Issue

Section

Ecology