Evaluation of the energy efficiency of heat supply systems of a residential building with heat pumps based on computer simulation

Authors

  • I. Sukhodub National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
  • V. Shklyar National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
  • V. Dubrovska National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
  • O. Yatsenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
  • P. Serdechnyi National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” , Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

DOI:

https://doi.org/10.31548/energiya1(71).2024.142

Abstract

This article presents an analysis of the energy efficiency of the heating system of a single-family residential building with the integration of a heat pump (HP) using climate data for Kyiv city. Specialized software complexes for calculation (GeoT*SOL), dynamic energy modeling (DesignBuilder/EnergyPlus), and techno-economic justification of HP systems implementation (RETScreen) were used for this purpose. The analysis was conducted for two types of HPs: air-to-water (air-based) and ground-source (ground-based), considering various temperature regimes of the indoor heating system. Based on the modeling results, it was determined that for an air-to-water HP with a nominal capacity of 7 kW, the average seasonal efficiency rating could be approximately 3.6 for the HP itself and 2.7 for the overall system. For a ground-source HP with a nominal capacity of 6 kW, the average seasonal efficiency rating is 4.7 for the HP itself and 3.75 for the overall system. The total electricity consumption varies within the range of 4800–5700 kWh for air-based HP and 3200–4300 kWh for ground-based HP. Depending on the HP capacity, the share of heating energy coverage ranges from 85-98% for ground-based HP and 79-98% for air-based HP. The simple payback period of the HP-based heating system compared to electric convectors is 15.2–17.0 years.

Key words: energy efficiency, building energy modeling, climate data, heat pump, nearly zero-energy buildings

References

European Parliament and Council Directive 2010/31/EU of 19 May 2010 on the energy performance of buildings. Retrieved from: https://zakon.rada.gov.ua/laws/show/984_011-10#Text

On Energy Efficiency of Buildings: Law of Ukraine dated 22.06.2017 No. 2118-VIII. Holos Ukrainy. 2017. July 22. (No. 134). Retrieved from: https://zakon.rada.gov.ua/laws/show/z0825-18#n16

State Building Codes V.2.6–31:2021. Thermal insulation and energy efficiency of buildings. Replaces State Building Codes V.2.6–31:2016; effective from 2022-09-01. Official ed. Kyiv: State Enterprise "Ukrarhbudinform", 2021. 23 p.

Basok, B.I., Nedbaylo, O.M., Tkachenko, M.V., Bozhko, I.K., Lysenko, O.M., & Lunina, A.O. (2015). Modernizatsiia systemy opalennia budivli z vykorystanniam teplovoho nasosa typu "povitria-ridyna" [Modernization of building heating system using air-liquid heat pump]. Promyshlennaya Teplotekhnika, 37(5), 68-74. [In Ukrainian]. https://doi.org/10.31472/ihe.5.2015.08

Gaur, A.S., Fitiwi, D.Z., & Curtis, J. (2021). Heat pumps and our low-carbon future: A comprehensive review. Energy Research & Social Science, 71, 101764. https://doi.org/10.1016/j.erss.2020.101764

Marguerite, C., Geyer, R., Hangartner, D., Lindahl, M., & Pedersen, S.V. (2019). IEA Heat Pumping Technologies Annex 47. Retrieved from: https://heatpumpingtechnologies.org/annex47/wp-content/uploads/sites/54/2019/03/task3-report.pdf

Afjei, Thomas, & Dott, Ralf. (2011). Heat pump modelling for annual performance, design and new technologies. Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association. Available at: https://www.researchgate.net/publication/267705775_Heat_pump_modelling_for_annual_performance_design_and_new_technologies.

Chirin, D.A., & Irodov, V.F. (2020). Matematychne ta komp’iuterne modeliuvannia systemy teplopostachannia vid soniachnykh plivkovykh kolektoriv z teplovym nasosom [Mathematical and computer modeling of a heating system from solar film collectors with a heat pump]. Scientific Notes of V.I. Vernadsky Tavria National University, Technical Sciences Series, 5, 135–140.

Golovko, V.M., & Mikhaylin, V.I. (2023). Systema opalennia pryvatnoho budynku na osnovi teplovoho nasosu ta fotoelektrostantsii [Heating system of a private house based on a heat pump and a photovoltaic power station]. Energy and Automation, 2, 63–70. .

He, M., Rees, S., & Shao, L. (2011). Simulation of a domestic ground source heat pump system using a three-dimensional numerical borehole heat exchanger model. Journal of Building Performance Simulation, 4, 141–155. https://doi.org/10.1080/19401493.2010.513739

Ashfaque Ahmed Chowdhury, M. G. Rasul, M. M. K. Khan. (2007). Modelling and simulation of building energy consumption: a case study on an institutional building in central Queensland, Australia. Building Simulation, Beijing, China. Retrieved from https://www.aivc.org/resource/modelling-and-simulation-building-energy-consumption-case-study-institutional-building.

Priarone, F., Silenzi, Federico, & Fossa, G. (2020). Modelling Heat Pumps with Variable EER and COP in EnergyPlus: A Case Study Applied to Ground Source and Heat Recovery Heat Pump Systems. Energies, 13, 794. https://doi.org/10.3390/en13040794

Sukhodub, I.O., Shklyar, V.I., & Dubrovska, V.V. (2022). Analiz faktychnykh, typovykh ta normatyvnykh klimatychnykh danykh v kontekcti enerhetychnoho modeliuvannia budivel [Analysis of actual, typical and normative climatic data in the context of energy modeling of buildings]. Energy: Economics, Technologies, Ecology, 2, 35–40. [In Ukrainian]. https://doi.org/10.20535/1813-5420.2.2022.261367

Published

2024-04-08

Issue

Section

Статті