Intelligent technologies in the evolution of electronic geodetic instruments: conceptual basis for the integration of artificial intelligence into spatial management systems and geoinformation environments

Authors

  • O. Malashchuk Odesa State Agrarian University image/svg+xml
  • T. Movchan
  • T. Rozhi

DOI:

https://doi.org/10.31548/zemleustriy2025.04.07

Keywords:

intellectualization, geodetic instruments, sensor integration, artificial intelligence, geographic information systems, public spatial management

Abstract

The article explores the issue of intellectualisation of electronic geodetic instruments in the context of spatial management systems, emphasising the transformation from automated procedures to adaptive self-learning technological solutions with the integration of digital ethics principles. An algorithmic analysis is implemented using the extended Kalman filter (EKF) and recurrent Long Short-Term Memory (LSTM) neural network architectures for adaptive filtering of information flows, as well as geospatial statistics and GIS visualisation methods for verifying coordinate consistency. The obtained scientific results indicate that intellectualisation determines the transformation to cognitive systems with sensor integration (GNSS, IMU, EDM), achieving millimetre accuracy using artificial intelligence algorithms – particularly EKF and LSTM –  for predictive modelling of errors and auto-correction. It was established that cloud infrastructure and interoperability with GIS platforms (ArcGIS, QGIS) form a unified digital environment with data validation mechanisms, which increases metrological stability and ethical accountability of systems.

The practical significance of the study is determined by the improvement of public administration systems, in particular urban planning, land cadastral accounting and infrastructure monitoring, where intelligent devices provide real-time data updates and preventive risk management. The study contributes to increasing the transparency of state registers through digital measurement passports, reducing errors and legal conflicts in the geoinformation environment. Prospects for further scientific exploration include the development of ethical standards for artificial intelligence in geodesy and integration with Internet of Things (IoT) technologies to establish global monitoring networks.

Keywords: intellectualisation, geodetic instruments, sensor integration, artificial intelligence, geographic information systems, public spatial management.

Author Biographies

  • O. Malashchuk, Odesa State Agrarian University

    PhD in economics, Associate professor, Acting chair of the Department of Geodesy, Land Management, and Land Cadastre

  • T. Movchan

    PhD in economics, Docent, Docent of department of geodesy, land management  and land cadastre and land cadastre

  • T. Rozhi

    Lecturer at the Department of Geography, Geodesy, and Land Management

References

1. Batrakova, A. H., Dorozhko, Ye. V., & Yemets, V. A. (2021). Osoblyvosti pobudovy tsyfrovoi modeli reliefu za rezultatamy heodezychnoi ziomky mistsevastsi [Features of constructing a digital terrain model based on the results of geodetic surveying of the area]. Komunalne hospodarstvo mist, 1(161), 104–108. https://doi.org/10.33042/2522-1809-2021-1-161-104-108

2. Kovalenko, L. O. (2022). Heodezychne zabezpechennia budivnytstva inzhenernykh sporud [Geodetic support for the construction of engineering structures]. Komunalne hospodarstvo mist. Seriia: informatsiini tekhnolohii ta inzheneriia, 3(170), 223–227. https://doi.org/10.33042/2522-1809-2022-3-170-223-227

3. Makedon, V. V., & Bailova, O. O. (2023). Planuvannia i orhanizatsiia vprovadzhennia tsyfrovykh tekhnolohii v diialnist promyslovykh pidpryiemstv [Planning and organizing the implementation of digital technologies in the activities of industrial enterprises]. Naukovyi visnyk Khersonskoho derzhavnoho universytetu. Seriia “Ekonomichni nauky”, 47, 16–26. https://doi.org/10.32999/ksu2307-8030/2023-47-3

4. Makedon, V. V., Kholod, O. H., & Yarmolenko, L. I. (2023). Model otsinky konkurentospromozhnosti vysokotekhnolohichnykh pidpryiemstv na zasadakh formuvannia kliuchovykh kompetentsii [Model for assessing the competitiveness of high-tech enterprises based on the formation of key competences]. Akademichnyi ohliad, 2(59), 75–89. https://doi.org/10.32342/2074-5354-2023-2-59-5

5. Rybina, O. I. (2025). Intehrovana model ISLA yak vidpovid na vyklyky suchasnoi zemelnoi polityky Ukrainy [Integrated ISLA model as a response to the challenges of modern land policy of Ukraine]. Naukovi zapysky Lvivskoho universytetu biznesu ta prava. Seriia ekonomichna. Seriia yurydychna, 44, 416–423. https://doi.org/10.5281/zenodo.15532670

6. Stupen, O. I., Prokopenko, N. I., & Shevchuk, S. M. (2025). Tsyfrova transformatsiia systemy zemleustroiu: avtomatyzatsiia upravlinskykh protsesiv u sferi vykorystannia ta okhorony zemelnykh resursiv [Digital transformation of the land management system: automation of management processes in the field of land use and protection]. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 212, 172–184. https://doi.org/10.18664/1994-7852.212.2025.336296

7. Sukhyi, P. O., Sabadash, V. I., & Darchuk, K. V. (2021). Suchasni elektronni heodezychni prylady: praktykum [Modern electronic geodetic instruments: Practicum]. Chernivtsi: Yurii Fedkovych Chernivtsi National University.

8. Tymchenko, S. I. (2024). Kontseptsiia tsyfrovizatsii dorozhnio-infrastrukturnykh proiektiv v Ukraini: vykorystannia heoinformatsiinykh tekhnolohii dlia pidvyshchennia efektyvnosti upravlinnia [The concept of digitalization of road infrastructure projects in Ukraine: using geoinformation technologies to improve management efficiency]. Upravlinnia rozvytkom skladnykh system, 60, 95–104. https://doi.org/10.32347/2412-9933.2024.60.95-104

9. Shevchuk, S. M., Domashenko, H. T., & Kuryshko, R. V. (2024). Heodezychnyi monitorynh pry rozrobtsi kompleksnykh planiv prostorovoho rozvytku [Geodetic monitoring in the development of integrated spatial development plans]. Heohrafiia ta turyzm, 31, 31–37. https://doi.org/10.17721/2308-135X.2024.76.31-37

10. Bajrami Lubishi, F., & Lubishtani, M. (2025). Advancing geodesy education: Innovative pedagogical approaches and integration into STEM curricula. STEM Education, 5(2), 229-249. https://doi.org/10.3934/steme.2025012

11. Kukhar, M., Myronenko, M., Kobzan, S., & Masliy, L. (2023). Analysis of the main aspects of modern tools for solving geodetic problems. Sworld-Us Conference Proceedings, 1(usc16-01), 37-42. https://doi.org/10.30888/2709-2267.2023-16-01-043

12. Makedon, V., Myachin, V., Aloshyna, T., Cherniavska, I., & Karavan, N. (2025). Improving the readiness of enterprises to develop sustainable innovation strategies through fuzzy logic models. Economic Studies (Ikonomicheski Izsledvania), 34(5), 165-179. https://archive.econ-studies.iki.bas.bg/2025/2025_05/2025_05_09.pdf

13. Sehnal, M. (2025). The visibility challenge of geodesy. GIM International, 39(4), 20–21. https://www.gim-international.com/content/article/the-visibility-challenge-of-geodesy

14. Stadnikov, V., Likhva, N., Miroshnichenko, N., Kostiuk, V., & Dorozhko, Y. (2025). Exploring Geoinformation Technology Potential for Automating the Development and Maintenance of Digital Topographic Maps. African Journal of Applied Research, 11(1), 146-156. https://doi.org/10.26437/ajar.v11i1

15. Stefanova, A. (2025). Geodesy 4.0: Geodesy transformation via new technologies. Proceedings of the XII International Scientific Conference on Architecture and Civil Engineering (ArCivE 2025), Varna, Bulgaria, Vol. 5, 311-317.

16. Wójcik, M., Dmochowska-Dudek, K., & Tobiasz-Lis, P. (2021). Boosting the potential for GeoDesign: Digitalisation of the system of spatial planning as a trigger for smart rural development. Energies, 14(13), 3895. https://doi.org/10.3390/en14133895

Downloads

Published

2025-12-30

Issue

Section

Topographic and Geodetic and Сartographic Support in Land Management