CALLUSOGENESIS OF THE EXPLANTS CUCURBITA PEPO VAR. GIRAUMONTIIN CULTURE IN VITRO UNDER THE INFLUENCE OF N-HEXANOYL-L-GOMOSERINLAKTON



DOI: http://dx.doi.org/10.31548/biologiya2018.287.120

O. P. Taran, L. M. Babenko, O. V. Moshynets, S. P. Rogalsky, O. V. Lobova, O. V. Matskevich

Анотація


Regeneration of the explants and stimulation of calusogenesis are topical tasks of modern biotechnology of plants. In this paper, the phyto-stimulating effect of the molecule of the class of acylgomoserinlactones (AGL), a common class of bacterial signaling molecules, which is involved in the remote transduction of signals between phytosphere bacterial colonizers and directly between bacteria and plant, is investigated. The aim of the work was to evaluate the effect of treatment of short-chain AGL – N-hexanoyl-L-homoserinlactone (HGL) the explants of  the cotyledons of squash Cucurbita pepo var. giraumonti on callusogenesis in vitro. Treatment with the solution of HGL and DMSO (solvent) was carried out under aseptic conditions, immersing explants in solutions of substances for 30 minutes. Indeterminate cotyledonous plants that were cultivated in vitro, were planted for medium  with aga-agar for callusogenesis and cultured witout the light at 25 ℃. In the experiment, all explants formed a loose callus of cream color. In explants,  treated with HGL, a significant increase in the raw and dry weight of callus was established. The callus proliferation in the variant  with AGL was started several days earlier than in the control variant. Taking into account the positive effect of the use of HGL on proliferation and the growth of callus culture in the first stage of callusogenesis of the explants squash, further research on the stimulating effects of HGL is promising, in particular, to optimize plant growth protocols in vitro and to create effective regeneration systems.


Повний текст:

PDF

Посилання


Babenko, L. M., Shherbatyuk, M. M., Moshy'necz', O. V., Kosakivs'ka, I. V. (2016). Acylgomoserynlaktony bakterialnogo poxodzhennya u biotexnologiyi prajmuvannya roslyn: dosyagnennya i perspekty'vy' vy'kory'stannya v agrarnomuvyrobnycztvi [Acyclmogomerserlinactones of bacterial origin in biotechnology of plant priming: achievements and perspectives of use in agrarian production]. Plant Physiology and Genetics. 48 (6), 463-474. Available at:http://nbuv.gov.ua/UJRN/FBKR_2016_48_6_3

Babenko, L. M., Moshy'necz', E. V., Rogal'sky'j, S. P., Shherbatyuk, N. N., Suslova, O. S., Kosakovskaya, Y'. V. (2017). Vly'yany'e predposevnogo prajmy'rovany'ya N-geksanoy'l-L-gomosery'nlaktonom na formy'rovany'e ry'zosfernoj mykroflori y strukturu urozhajnosty' Triticum aestivum L. [Influence of presowing priming with N-hexanoyl-L-homoserine lactone on the formation of rhizosphere microflora and yield structure of Triticum aestivum L]. The Bulletin of Kharkiv National Agrarian University. Series Biology, 1, 106-118.

Zhuravlev, Yu. N., Omel'ko, A. M. (2008). Morfogenz rasteny'j in vitro [Plant morphogenesis in vitro]. Plant Physiology, 55(5), 643-664.

https://doi.org/10.1134/S1021443708050014

Ignatova, S. A. (2011). Kletochnyye tekhnologi v rasteniyevodstve. genetike i selektsii vozdelyvayemykh rasteniy: zadachi. vozmozhnosti. razrabotki sistem in vitro [Cell technologies in crop production, genetics and selection of cultivated plants: tasks, opportunities, development of systems in vitro]. Odesa: Astroprint, 224.

Krestecz'ka, S. L., Nesterenko, A. M. (2007). Autoindukciya ta sy'gnal'na transdukciya: komunikatorni sy'stemy' v mikrobny'x populyaciyax [Autoinduction and signal transduction: communicative systems in microbial populations]. Annals Mechnicov Inst, 1, 4-9.

Kunax, V. A. (2005).Biotexnologiya likars'ky'x rosly'n. Genety'chni ta fiziologo-bioximichni osnovy' [Biotechnology of medicinal plants. Genetic and physiological and biochemical bases]. К: Logos, 730.

Kunax, V. A. (1997). Genomnaya y'zmenchy'vost' somaty'chesky'x kletok rasteny'j. 3. Kallusoobrazovany'e in vitro [Genomic variability of plant somatic cells. 3. Callus formation in vitro]. Biopolymers and cell, 13( 5), 362-371.

https://doi.org/10.7124/bc.000497

Kushnir, G. P., Sarnacz'ka, V. V. (2005).Mikroklonal'ne rozmnozhennya rosly'n [Microclonal propagation of plants.]. К: Naukova dumka, 271.

Luchakivskaya, Yu. S., Olevinskaya, Z. M., Kischenko, E. M., Spivak, N. Ya., Kuchuk, N. V. (2012). Poluchenie kulturyi «borodatyih» korney, kallusnyih i suspenzionnyih kletochnyih kultur morkovi [Daucus carota L.], sposobnyih ekspressirovat chelovecheskiy interferon alfa-2b [Obtaining a culture of "bearded" roots, callus and suspension cell carrot cultures [Daucus carota L.] capable of expressing human interferon alpha-2b]. Cytology and genetics,46(1), 18-26.

https://doi.org/10.3103/S0095452712010057

Moshy'necz', O. V., Kosakivs'ka, I. V. (2010). Ekologiya fitosfery': rosly'nno-mikrobni vzayemovidnosy'ny'. 2. Fitosfera yak ekologichna nisha rosly'nno-mikrobny'x vzayemovidnosy'n. funkcional'na akty'vnist' mikroorganizmiv ta yixnij vply'v na rosly'ny' [Ecology of the phytosphere: vegetative-microbial interrelations. 2. Phytososphere as an ecological niche of plant-microbial interrelations. functional activity of microorganisms and their influence on plants]. The Bulletin of Kharkiv National Agrarian University. Series Biology, 21(3), 6-22.

Bai, X., Todd, C. D., Desikan, R., Yang, Y. (2012). N-3-oxo-decanoyl-Lhomoserinelactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in muny bean. Plant Physiol, 158,725-736.

https://doi.org/10.1104/pp.111.185769

Bassler, B. (2002) Small talk. Cell-to-cell communication in bacteria. Cell, 109, 421-424.

https://doi.org/10.1016/S0092-8674(02)00749-3

Benderradji, L., Brini, F., Kellou, K., Ykhelf, N., Djekoun, A., Masmoudi K., Bouzerour H. (2012). Callus induction, proliferation, and plantlets regeneration of two bread wheat [Triticum aestivum L.] genotypes under saline and heat stress conditions. ISRN Agronomy, article ID 367851. doi:10.5402/2012/367851

https://doi.org/10.5402/2012/367851

Compton, M. E., Gray, D. J., Gaba, V. P. (2004). Use of tissue culture and biotechnology for the genetic improvement of watermelon. Plant, Cell, Tissue and Organ Culture, 77, 231-243.

https://doi.org/10.1023/B:TICU.0000018428.43446.58

Copley, J. (2000). Ecology goes underground. Nature, 406, 452-454.

https://doi.org/10.1038/35020131

Gal-On, A., Wolf, D., Yehezkel, A., Patlis, L., Ryu, K. H., Min, B. E., Pearlsman, M., Lachman, O., Gaba, V., Wang, Y., Shiboleth, Y. M., Yang, J., Zelcer, A. (2005).Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect nontransgenic scions from soil infection. Transgenic Research,14, 81-93.

https://doi.org/10.1007/s11248-004-3802-7

Ganesan, M., Jayabalan, N. (2006) Isolation of disease-tolerant cotton [Gossypium hirsutum L. cv. SVPR 2] plants by screening somatic embryos with fungal culture filtrate. Plant Cell Tissue Organ Cult, 87, 273-284.

https://doi.org/10.1007/s11240-006-9164-5

Gisbert, C., Picу, B., Nuez, F. (2010-2011) Regeneration in selected Cucurbita spp. germplasm.Cucurbit Genetics Cooperative Report, 33/34, 53-54.

Bajaj, Y. P. S. and ed. (2013).High-Tech and Micropropagation V [Biotechnology in Agriculture and Forestry]. Springer Science & Business Media, 396.

Kaeppler, S. M., Kaepler, H. F., Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology, 43,179-188.

https://doi.org/10.1023/A:1006423110134

Kim, K.-M., Kim, Ch.,K., Han, J.-S. (2010).,In vitro regeneration from cotyledon explants in figleaf gourd [Cucurbita ficifolia Boucheґ], a rootstock for Cucurbitaceae. Plant Biotechnol Rep, 4,101-107.

https://doi.org/10.1007/s11816-009-0122-7

Krug, M.,G.,Z., Stipp, L. C. L., Rodriguez, A. P. M., Mendes, B. M. J. (2005). In vitro organogenesis in watermelon cotyledons. Pesq. agropec. Bres, 40/9, 861-865.

https://doi.org/10.1590/S0100-204X2005000900004

Kyung-Min, K., K. Chang, Kil, Jeung-Sul, H. (2010).In vitro regeneration from cotyledon explants in figleaf gourd [Cucurbita ficifolia Bouche'], a rootstock for Cucurbitaceae. Plant Biotechnology Reports, 4, 101-107.

https://doi.org/10.1007/s11816-009-0122-7

Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B. G., Bauer, W. D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proc Natl Acad Sci USA, 100,1444-1449.

https://doi.org/10.1073/pnas.262672599

Miller, M. B., Bassler, B. L. (2001). Quorum sensing in bacteria. Annu. Rev. Microbiol , 55, 165-99.

https://doi.org/10.1146/annurev.micro.55.1.165

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.

https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Ortiz-Castro, R., Martinez-Trujillo, M., Lopez-Bucio, J. (2008). N-acyl-Lhomoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana .Plant Cell Environ, 31, 1497-1509.

https://doi.org/10.1111/j.1365-3040.2008.01863.x

Park, S. M., Lee, J. S., Jegal, S., Jeon, B. Y., Jung, M., Park, Y. S., Han, S. L., Shin, Y. S., Her, N. H., Lee, J. H., Lee, M. Y., Ryu, K. H., Yang, S. G., Harn, Ch. H. (2005). Transgenic watermelon rootstock resistant to CGMMV [Cucumber green mottle mosaic virus] infection. Plant Cell Rep, 24, 350-356.

https://doi.org/10.1007/s00299-005-0946-8

Pérez-Clemente, R., Gómez-Cadenas, A. (2012). In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions. Recent Advances in Plant in vitro Culture, 34, 92-104.

Rai, M., Kalia, R., Rohtas Singha, R., Gangola, M., Dhawana, A. (2011). Developing stress tolerant plants through in vitro selection [An overview of the recent progress]. Environmental and Experimental Botany,71, 89-98.

https://doi.org/10.1016/j.envexpbot.2010.10.021

,Sakhanokho, H. F., Kelley, R. Y. (2009). Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos [cv'Luna Red']. Afr. J. Biotechnol, 21,1474-148. 32. Schenk, S., Schikora, A. (2015). AHL-priming function via oxylipin and salicylic acid. Front. Plant Sci, 5, 784-794.

Schenk, S. T., Stein, E., Kogel, K.-H., Schikora, А. (2012). Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signaling & Behavior,7/2, 178-181.

https://doi.org/10.4161/psb.18789

Schuhegger, R., Ihring, A., Gantner, S. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ, 29, 909 - 918.

https://doi.org/10.1111/j.1365-3040.2005.01471.x

Von Rad, U., Klein, I., Dobrev, P. I,. Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A., Schmitt-Kopplin, Ph., Durner, J. (2008). Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserinelactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, 229,73-85.

https://doi.org/10.1007/s00425-008-0811-4

Wang, W., Vinocur, B., Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1-14.

https://doi.org/10.1007/s00425-003-1105-5


Метрики статей

Завантаження метрик ...

Metrics powered by PLOS ALM

Посилання

  • Поки немає зовнішніх посилань.