Фітопаразитичні нематоди трьох енергетичних культур для виробництва біопалива
DOI: http://dx.doi.org/10.31548/biologiya15(2).2024.006
Анотація
Огляд літератури присвячений комплексному аналізу наукових досліджень, спрямованих на вивчення взаємодії фітопаразитичних нематод з енергетичними культурами, такими як міскантус, топінамбур та павловнія, а також на розгляд факторів, які впливають на поширення цих нематод у системах вирощування трьох біопаливних культур: міскантус гігантський, павловнія повстиста та топінамбур. В основі дослідження лежить аналіз взаємодії між нематодами та врожайністю цих культур, а також потенційний позитивний вплив нематодних угрупувань різних трофічних груп на якість та фіторемідіацію ґрунту. Особливу увагу було приділено фітопаразитичним нематодам, які є одними з найбільш поширених ґрунтових шкідників рослин. Врахування взаємодії між нематодами та енергетичними культурами має велике значення для створення стійких і ефективних систем вирощування, які б забезпечували високу врожайність та зберігали біорізноманіття ґрунтової екосистеми.
У роботі зроблено огляд трьох енергетичних культур для виробництва біопалива (міскантус гігантський, павловнія повстиста і топінамбур), зазначені нематоди-шкідники кожної з цих культур, які були знайдені у ризосфері рослин протягом багатьох років опублікованих досліджень. Також було приділено увагу негативному впливу фітопаразитичних нематод на вирощування енергетичних культур, особливо міскантусу. Проте, виявлено, що певні кліматичні, хімічні та фізичні умови сприятливі для формування нематодних угрупувань, які можуть позитивно впливати на якість ґрунту та підтримувати його родючість.
Робота важлива для розвитку стратегій управління чисельністю різних трофічних рівнів нематод, а особливо - фітопаразитичних, особливо у контексті вирощування перспективних енергетичних культур для виробництва біопалива. Також у огляді описаний важливий вплив фіторемідіації на чисельність нематодних угрупувань у ґрунті. Отримані результати можуть стати основою для подальших досліджень у цій області та впровадження ефективних методів збереження родючості ґрунту та підвищення врожайності енергетичних культур. Результати цього огляду літератури можуть також сприяти розробці екологічно стійких методів вирощування енергетичних культур, що сприятиме збереженню природних ресурсів та зменшенню впливу сільськогосподарської діяльності на довкілля.
Ключові слова
Повний текст:
PDFПосилання
Pidlisnyuk R. A., Newton R. A., Mamirova A. (2021). Miscanthus biochar value chain - A review. Journal of Environmental Management. doi:10.1016/j.jenvman.2021.112611
Vodiak Y. T., Tsapko Y., Kucher A., Krupin V. (2022). Influence of Growing Miscanthus x giganteus on Ecosystem Services of Chernozem. doi:10.3390/en15114157
Jezierska-Thöle A., Rudnicki R., Kluba M. (2016). Development of energy crops cultivation for biomass production in Poland. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2016.05.024
Sims R., Hastings A., Schlamadinger B., Taylor G. (2006). Energy crops: current status and future prospects. Global Change Biology. doi:10.1111/j.1365-2486.2006.01163.x
Zegada-Lizarazu W., Monti A. (2011). Energy crops in rotation. A review. Biomass and Bioenergy. doi:10.1016/j.biombioe.2010.08.001
Christian D. G., Riche A. B., Yates N. E. (2008). Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and Products. doi:10.1016/j.indcrop.2008.02.009
Szulczewski W., Zyromski A., Jakubowski W., Biniak-Pierog M. (2018). A new method for the estimation of biomass yield of giant miscanthus (Miscanthus giganteus) in the course of vegetation. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2017.07.057
Ouattara M. S., Laurent A., Barbu C. M., Berthou M. (2020). Effects of several establishment modes of Miscanthus × giganteus and Miscanthus sinensis on yields and yield trends. GCB-Bioenergy. doi:10.1111/gcbb.12692
Stavridou E., Hastings A., Webster R., Robson P. (2016). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus. GCB - Biotechnology. doi: 10.1111/gcbb.12351
Mokrzycki J., Magdziarz A., Rutkowski P. (2022). The influence of the Miscanthus giganteus pyrolysis temperature on the application of obtained biochars as solid biofuels and precursors of high surface area activated carbons. Biomass and Bioenergy. doi:10.1016/j.biombioe.2022.106550
Lewandowski I., Scurlock J., Lindvall E., Myrsini C. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25 (4). doi:10.1016/S0961-9534(03)00030-8
Heletukha H. H. (2016). Analiz kryteriiv staloho rozvytku bioenerhetyky. Promyslova teplotekhnika.
Pidlisnyuk V. V., Erickson L. E., Trögl J., Shapoval P. (2017). Metals uptake behaviour in Miscanthus x giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia. Polish Journal of Chemical Technology 20 (2). doi:10.2478/pjct-2018-0016
Stefanovska T. R., Skwiercz A., Zouhar M., Pidlisnyuk V. (2020). Plant feeding nematodes associated with Miscanthus×giganteus and their use as potential indicators of the plantations’ state. International Journal of Environmental Science and Technology. doi:10.1007/s13762-020-02865-z
Heaton E. A., Dohleman F. G., Juvik J. A., Lozovaya V. (2010). Chapter 3 - Miscanthus: A Promising Biomass Crop. Advances in Botanical Research. doi:10.1016/B978-0-12-381518-7.00003-0
Heaton E. A., Dohleman F. G., Long S. P. (2008). Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology. doi:10.1111/j.1365-2486.2008.01662.x
McCarthy S. M. (1995). Progress in commercial development of Miscanthus in England. Biomass for Energy, Environment, Agriculture and Industry.
Venturi P., Huisman W., Molenaar J. (1997). The effect of harvest methods of Miscanthus × giganteus on available harvest time. Sustainable Agriculture for Food Energy and Industry.
Harvey J. J. (1995). Progress in commercial development of Miscanthus in England. In Biomass for Energy, Environment, Agriculture and Industry.
Walsh M. (1998). In Proceedings of the 10th European Conference and Technology Exhibition Biomass for Energy and Industry.
Pidlisnyuk V., Stefanovska T., Lewis E. E., Erickson L. E. (2014). Miscanthus as a Productive Biofuel Crop for Phytoremediation. Critical Reviews in Plant Sciences Volume 33. doi:10.1080/07352689.2014.847616
Al Souki K. S., Burdová H., Mamirova A., Kuráň P. (2021). Evaluation of the Miscanthus x giganteus short term impacts on enhancing the quality of agricultural soils affected by single and/or multiple contaminants. Environmental Technology & Innovation 24. doi:10.1016/j.eti.2021.101890
Nisa R. U., Kouser N., Tantray A. Y., Allie K. (2021). Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi Journal of Biological Sciences Volume 28.
Winkler B., Mangold A., von Cossel M., Clifton-Brown J. (2020). Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2020.110053
Akyildiz M. H., Sahil Kol H. (2010). Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) wood. Journal of Environmental Biology.
López F., Pérez A., Zamudio M., De Alva H. (2012). Paulownia as raw material for solid biofuel and cellulose pulp. Biomass and Bioenergy. doi:10.1016/j.biombioe.2012.05.010
Hecker U. (2003). Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie.
Jakubowski M. (2022). Cultivation Potential and Uses of Paulownia Wood: A Review. Forests 2022.
Rafighi A., Tabarsa T. (2011). Manufacturing High Performance Wood Composite Panel from Paulownia. Key Engineering Materials. doi:10.4028/www.scientific.net/KEM.471-472.1091
Mohamad M. E., Awad A. A., Majrashi A., Abd Esadek O. A. (2022). In vitro study on the effect of cytokines and auxins addition to growth medium on the micropropagation and rooting of Paulownia species (Paulownia hybrid and Paulownia tomentosa). Saudi Journal of Biological Sciences. doi:10.1016/j.sjbs.2021.11.003
Skwiercz A. T., Zapałowska A., Litwińczuk W., Stefanovska T. (2022). Plant Parasitic Nematodes on Paulownia tomentosa in Poland. Journal of Horticultural Research. doi:10.20944/preprints202001.0047.v1
Buzan R. L., Maxim A., Odagiu A., Balint C. (2018). Paulownia sp. Used as an Energetic Plant, for the Phytoremediation of Soils and in Agroforestry Systems. Academic Journal.
Esteves B., Cruz-Lopez L., Viana H., Ferreira J. V. (2022). The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud. Forests. doi:10.3390/f13050700
Yue H. N., Wu Y. F., Shi Y. Z., Wu K. K. (2008). First report of paulownia witches'-broom phytoplasma in China. Plant disease. doi:10.1094/PDIS-92-7-1134A
Aloi F., Riolo M., La Spada F., Bentivenga G. (2021). Phytophthora Root and Collar Rot of Paulownia, a New Disease for Europe. Forests 2021. doi:10.3390/f12121664
Skwiercz A. T., Dobosz R., Flis L., Damszel M. (2019). First report of Meloidogyne hapla on Paulownia tomentosa in Poland. Acta Societatis Botanicorum Poloniae. doi:10.5586/asbp.3628
Lv S., Wang R., Xiao Y., Li F. (2019). Growth, yield formation, and inulin performance of a non-food energy crop, Jerusalem artichoke (Helianthus tuberosus L.), in a semi-arid area of China. Industrial Crops and Products. doi:10.1016/j.indcrop.2019.03.064
Pan L., Sinden M. R., Kennedy A. H., Chai H. (2009). Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochemistry Letters Volume 2. doi:10.1016/j.phytol.2008.10.003
Sawicka B., Skiba D., Bienia B., Kiełtyka-Dadasiewicz A. (2019). Jerusalem Artichoke (Helianthus Tuberosus L.) as Energy Raw Material. Research and Innovation for Bioeconomy. doi:10.15544/RD.2019.042
Nacoon S., Jogloy S., Riddech N., Mongkolthanaruk W. (2020). Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Scentific Reports. doi:10.1038/s41598-020-61846-x
Zapałowska A., Skwiercz A. (2018). Populations of parasitic nematodes colonizing Jerusalem artichoke (Helianthus tuberosus L.). Acta Societatis Botanicorum Poloniae. doi:10.5586/asbp.3578
Gunnarson, S. (1985). Jerusalem artichoke (Helianthus tuberosus L.) for biogas production. Biomass.
Gunnarsson I. B., Svensson S., Johansson E., Karakashev D. (2014). Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Industrial Crops and Products. doi:10.1016/j.indcrop.2014.03.010
Koppenhöfer A. M. (2007). Field Manual of Techniques in Invertebrate Pathology.
Machado R., Heinrich von Reuss S. (2022). Chemical Ecology of Nematodes. Chemical Ecology. doi:10.2533/chimia.2022.945
Nazarova, F. S. Parasitic phytonematodes. Global Scientific Review.
Zhao J., Li D., Fu S., He X. (2016). Using the biomasses of soil nematode taxa as weighting factors for assessing soil food web conditions. Ecological Indicators 60. doi:10.1016/j.ecolind.2015.06.003
Taylor, R. (2019). Taylor's Power Law: Order and Pattern in Nature. Academic Press.
Sochová I., Hofman J., Holoubek I. (2006). Using nematodes in soil ecotoxicology. Environment International. doi:10.1016/j.envint.2005.08.031
Morand S., Nadler S., Skorping A. (2015). Nematode life-traits diversity in the light of their phylogenetic diversification. doi:10.1017/CBO9781139794749.017
Hailu F. A., Hailu Y. A. (2020). Agro-Ecological Importance of Nematodes (Round Worms). Acta Scientific Agriculture. doi:10.31080/ASAG.2020.04.agro-ecological-importance-of-nematodes-round-worms
Shavkatovna, K. N. (2023). Taxonomy and ecology of phytonematodes of some plants growing in the greenhouse. International Multidisciplinary Journal for Research & Development.
Cunningham S. D., Shann J. R., Crowley D., Anderson T. (1997). Phytoremediation of Contaminated Water and Soil. doi:10.1021/bk-1997-0664.ch001
Römkens P., Bouwman L., Japenga J., Draaisma C. (2002). Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution. doi:10.1016/S0269-7491(01)00150-6
Raskin I., Ensley B. (1999). Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment.
Ferris, H. (2010). Contribution of Nematodes to the Structure and Function of the Soil Food Web. Journal of Nematology.
Khandelwal G., Chaudhary V., Iyer R., Dwivedi A. (2022). Soil Bacteria and Nematodes for Bioremediation and Amelioration of Polluted Soil. Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation. doi:10.1007/978-3-031-08830-8_3
Bouwman, L. A. (1994). The ecology of bacterivorous protozoans and nematodes in arable soil. Agriculture Ecosystems & Environment 51.
Rehman P., Nazir R., Naqvi T., Pervez A. (2018). Bacterial feeder Nematodes: Facilitator or competitor for Plant Phosphorus in soil. Journal of Soil Science and Plant Nutrition. doi:10.4067/S0718-95162018005003203
Moura G., Franzener G. (2017). Biodiversity of nematodes biological indicators of soil quality in the agroecosystems. doi:10.1590/1808-1657000142015
Li J., Wu X., Gebremikael M. T., Wu H. (2018). Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system. doi:10.1371/journal.pone.0195144
Gebremikael M. T., Steel H., Buchan D., Bert W. (2016). Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. doi:10.1038/srep32862
Parr McQueen J., Treonis A. M. (2019). Cacao agroforestry in Belize: Effects on soil nematode community structure. Agroforestry Systems. doi:10.1007/s10457-019-00477-2
Renčo M., Gömöryová E., Čerevková A. (2020). The Effect of Soil Type and Ecosystems on the Soil Nematode and Microbial Communities. Helminthologia. doi:10.2478/helm-2020-0014
Liu T., Hu F., Li H. (October 2019 p.). Spatial ecology of soil nematodes: Perspectives from global to micro scales. Soil Biology and Biochemistry. doi:10.1016/j.soilbio.2019.107565
Alasmary Z., Todd T., Hettiarachchi G., Stefanovska T. (2020). Effect of Soil Treatments and Amendments on the Nematode Community under Miscanthus Growing in a Lead Contaminated Military Site. Agronomy 2020. doi:10.3390/agronomy10111727
Preez G. D., Daneel M., Goede R. D., Ferris H. (2022). Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biology and Biochemistry. doi:10.1016/j.soilbio.2022.108640
Zhao C., Shao Y., Lu H., Classen A. (2024). Drought shifts soil nematode trophic groups and mediates the heterotrophic respiration. Journal of Plant Ecology. doi:10.1093/jpe/rtae012
Rohini Ekanayake, H. M. (1996). Nematode Parasites on Agricultural Crops and Their.
Cumagun C. J. R., Moosavi M. (2015). Significance of biocontrol agents of phytonematodes. Biocontrol Agents of Phytonematodes. doi:10.1079/9781780643755.0050
Briar S. S., Wichman D., Reddy G. (2016). Plant-Parasitic Nematode Problems in Organic Agriculture. Organic Farming for Sustainable Agriculture. doi:10.1007/978-3-319-26803-3_5
Ntalli N., Adamski Z., Doula M., Monokrousos N. (2020). Nematicidal Amendments and Soil Remediation. plants. doi:10.3390/plants9040429
Zhilina, T. M. (2012). Monitoring of the soil nematodes populations status of in natural and anthropogenic transformation coenoses. Naukovyi visnyk UzhNU Seriia: Biolohiia. Vypusk 32.
Nabih M. I., Bloem G., Poiesz T. (1997). Conceptual Issues in the Study of Innovation Adoption Behaviour. Advances in Consumer Research.
Georgieva, S., McGrath S., Hooper D., Chambers B. (2002). Nematode Communities under Stress: The Long-Term Effects of Heavy Metals in Soil Treated with Sewage Sludge. Applied Soil Ecology. doi:10.1016/S0929-1393(02)00005-7
Zhang X., Zhu A., Xin X., Yang W., Zhang J., Ding S. (2018). Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. Field Crops Research 221. doi:10.1016/j.fcr.2018.02.025
Satyendra, K. P., Phillips G., Bernard E. (2022). Increasing Levels of Physical Disturbance Affect Soil Nematode Community Composition in a Previously Undisturbed Ecosystem. The Journal of Nematology. doi:10.2478/jofnem-2022-0022
Yeates, G. W. (2003). Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils. doi:10.1007/s00374-003-0586-5
Wajid Khan M., Pathak K. (1993). Nematodes as vectors of bacterial and fungal plant pathogens. doi:10.1007/978
Singh S., Awashti L., Jangre A., Nirmalkar V. (2020). Transmission of plant viruses through soil-inhabiting nematode vectors. Applied Plant Virology (pp.291-300). doi:10.1016/B978-0-12-818654-1.00022-0
Nykyri J., Fang X., Dorati F., Bakr R. (2013). Evidence that nematodes may vector the soft rot-causing enterobacterial phytopathogens. doi:10.1111/ppa.12159
Shokoohi, E. (2024). Interactions of Free-Living Nematodes and Associated Microorganisms with Plant-Parasitic Nematodes. Sustainable Management of Nematodes in Agriculture, Vol.2: Role of Microbes-Assisted Strategies. doi:10.1007/978-3-031-52557-5_5
Mekete T., Lopez-Nicora H. (2011). Plant-Parasitic Nematodes Are Potential Pathogens of Miscanthus × giganteus and Panicum virgatum Used for Biofuels. Plant Disease. doi:10.1094/PDIS-05-10-0335
Stefanovska T., Skwiercz A., Pidlisnyuk V., Zhukov O., Shapoval O. (2023). Can Nematode Communities Work as an Indicator of Soil Health in a Multiyear Miscanthus х Giganteus Plantation Growing in Lead-Contaminated Soil? agronomy. doi:10.3390/agronomy13061620
Sharma, V. (1999). Root-knot nematodes of Paulownia and their management. Indian Journal of Forestry.
Todd, T. C. (2006). Sentinel nematodes of land-use change and restoration in tallgrass prairie. J. Nematol. 38.
Mekete, T. (2011). Plant Disease / April 2011 413 Plant-Parasitic Nematodes Are Potential Pathogens of Miscanthus × giganteusand Panicum virgatum Used for Biofuels. The American Phytopathological Society. doi:10.1094/PDIS-05-10-0335
Neher, D. A. (2001). Role of Nematodes in Soil Health and Their Use as Indicators. The Journal of Nematology.
Метрики статей
Metrics powered by PLOS ALM
Посилання
- Поки немає зовнішніх посилань.