METHANE FERMENTATION OF POMACE WASTES GENERATED IN CEREAL COFFEE PRODUCTION



J. BOHDZIEWICZ, J. CEBULA, K. PIOTROWSKI, P. SAKIEWICZ, L. PRZYWARA, T. PIMONENKO

Анотація


Batch methane fermentation of pomace wastes from cereal coffee production was experimentally studied. Data were elaborated with modified Gompertz kinetic model. The 10-time increase in reactor load 5-50 g/dm3 corresponds to proportional growth of maximal biogas yield Hmax from 421.94 to 4119.37 cm3 and growth of maximum process rate Rmax from 1.0745 to 10.7379 cm3/h. Unit reactor yield (for 1 g of raw mass, dry mass and dry organic mass) decreases, however, with increase in reactor load within 5-30 g/dm3 range while unit maximum process rate turned out to be  practically load-independent.

Повний текст:

Без заголовку (English)

Посилання


Kiran E. U. Bioconversion of food waste to energy / Trzcinski A. P., Ng W. J., Liu Y. // : A review. - Fuel 134 2014 -P. 389–399.

Corro G. Generation of biogas from coffee-pulp and cow-dung co-digestion: Infrared studies of postcombustion emissions / L. Paniagua, U. Pal,

F. Banuelos, M. Rosas // Energy Conversion and Management. − 2013−P. 471–481.

Murthy P. S. Sustainable management of coffee industry by-products and value addition / Murthy P. S., Naidu M. M. // Resources, Conversion and Recycling. – 2012. – P.45–58.

Kyung-Won J. Two-stage UASB reactor converting coffee drink manufacturing wastewater to hydrogen and methane. / K. Dong-Hoon,

L. Myung-Yeol, S. Hang-Sik // Int. J. Hydr. Energy. – 2012. – P. 7473–7481.

Bonilla−Hermosa V. A. Utilization of coffee by-products obtained from semi-washed process for production of valuable-added compounds. / W. F. Duarte, R. F. Schwan // Bioresource Technolog. − 2014. – P. 142–150.

Orozco A. L. Biotechnological enhancement of coffee pulp residues by solid-state fermentation with Streptomyces. / M. I. Pérez, O. Guevara, J. Rodríguez, M. Hernández, F. J. González−Vila, O. Polvillo, M. E. Arias // Py−GC/MS analysis, J. Anal. Appl. Pyrolysis – 2008 – р. 247–252.

Worobiej E. Kawy zbożowe – charakterystyka i właściwości przeciwutleniające / K. Relidzyńska // Bromat. Chem. Toksykol., − 2011 – XLIV(3) –P. 625–629.

Lasteur M. Alternative methods for determining anaerobic biodegradability: A review. / V. Bellon-Maurel, C. Gonzalez //Process Biochemistry – 2010. – 45. –P. 431–440.

Biernat K., Technologie energetycznego wykorzystania odpadów /

P. L. I. Dziołak, Samson-Bręk // Studia Ecologiae et Bioethicae UKSW. − 2011. – 9(2) – P. 103–129.

Rajczyk K. Wpływ zwiększonej ilości biomasy w paliwie na jakość powstających popiołów lotnych / E. Giergiczny, A. Jarocka // Scientific Works of Institute of Ceramics and Building Materials − 2012 − 5(11). – P. 88–100.

Ściążko M. Zalety i wady współspalania biomasy w kotłach energetycznych na tle doświadczeń eksploatacyjnych pierwszego roku współspalania biomasy na skalę przemysłową / J. Zuwała, M. Pronobis // Energetyka i Ekologia. 2006. – P. 207–220.

Bohdziewicz J. Kinetyka chemiczna fermentacji metanowej makuchu rzepakowego. / K. Piotrowski, J. Cebula // Ekoenergetyka – Biogaz. Wyniki badań, technologie, prawo i ekonomika w rejonie Morza Bałtyckiego, edited by: A. Cenian, J. Gołaszewski, T. Noch, Wydawnictwo Gdańskiej Szkoły Wyższej. Gdańsk, 2012. – P. 24–27.

Wang J. Kinetic models for fermentative hydrogen production: / W. Wan //A review, Int. J. Hydr. Energy. − 2009 – 34. –P. 3313 – 3323.


Метрики статей

Завантаження метрик ...

Metrics powered by PLOS ALM

Посилання

  • Поки немає зовнішніх посилань.