Threshold limit values of radionuclides in the waterbodies

Authors

  • M. Hrechaniuk National University of Life and Environmental Sciences of Ukraine
  • O. Kashparova National University of Life and Environmental Sciences of Ukraine Center for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences
  • P. Pavlenko National University of Life and Environmental Sciences of Ukraine
  • S. Levchuk National University of Life and Environmental Sciences of Ukraine
  • V. Maksin National University of Life and Environmental Sciences of Ukraine Ukrainian Research Institute "Resource" of the State Agency of Ukraine "Reserve
  • V. Kashparov National University of Life and Environmental Sciences of Ukraine 2Center for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences

DOI:

https://doi.org/10.31548/dopovidi2022.05.002

Keywords:

90Sr, 137Сs, radioecology, biotesting of fish, Chornobyl accident, radioactive contamination, threshold limit value

Abstract

When the content of 90Sr and 137Cs in reservoir water is below the permissible level, even for drinking water, the specific activity of radionuclides in fish can be hundreds and thousands of times higher than the established hygienic standards of DR-2006.

The purpose of this work was to determine the maximum permissible concentrations of 90Sr and 137Cs in the water of reservoirs depending on the content of calcium and potassium in the water based on the parameters of the metabolism of cesium and strontium in fish, which guarantee that the established hygienic standards of radionuclides in fish (DR-2006) are not exceeded with a probability of 95%.

It is shown that in reservoirs with low water mineralization, the maximum allowable concentrations of 90Sr and 137Cs will be too low at the level of Bq units per cubic meter and difficult to measure, unlike radioactive contamination of fish, which makes them, even with minor radioactive contamination of reservoirs, a unique bioindicator for the purposes radiation protection of people and the environment.

References

IAEA, (2006). Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the Chernobyl Forum Expert Group И?Environment’, Ed. Anspaugh, L. and Balonov, M., Radiological assessment reports series, IAEA, STI/PUB/1239. http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1239_web.pdf

IAEA, (2015). The Fukushima Daiichi accident. Radiological Consequences. 4/5. Vienna.IA EA- STI/PUB/1710. http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1710-ReportByTheDG-Web.pdf

Wada, T., Fujita, T., Nemoto, Y., Shimamura, S., Mizuno, T., Sohtome, T., Kamiyama, K., Narita, K., Watanabe, M., Hatta, N., Ogata, Y., Morita, T., Igarashi, S., (2016). Effects of the nuclear disaster on marine products in Fukushima: An update after five years. Journal of Environmental Radioactivity. 164, 312-324 http://dx.doi.org/10.1016/j.jenvrad.2016.06.028

Wada, T., Konoplev, A., Wakiyama, Y., Watanabe, K., Furuta, Y., Morishita, D., Kawata, G., Nanba, K., (2019). Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. Journal of Environmental Radioactivity. 204, 132–142. https://doi.org/10.1016/j.jenvrad.2019.04.006

Balonov M., Kashparov V., Nikolaenko E., Berkovsky V., Fesenko S. (2018). Harmonization of standards for permissible radionuclide activity concentrations in foodstuffs in the long term after the Chernobyl accident. Journal of Radiological Protection. Vol. 38. P. 854–867. https://doi.org/10.1088/1361-6498/aabe34

UNSCEAR 2020/2021 Report. Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2020/2021. Report to the General Assembly with Scientific. Annexes VOLUME II. Scientific Annex B. UNITED NATIONS. New York, 2022. https://www.unscear.org/docs/publications/2020/UNSCEAR_2020_21_Report_Vol.II.pdf

Dopustymi rivni vmistu radionuklidiv 137Cs ta 90Sr u produktakh kharchuvannya ta pytniy vodi (DR-2006). Hihiyenichnyy normatyv HN 6.6.1.1-130-2006.

http://search.ligazakon.ua/l_doc2.nsf/link1/RE12719.html

NORMY RADIATSIYNOYI BEZPEKY UKRAYINY (NRBU-97). Kyyiv. 1998 https://zakon.rada.gov.ua/rada/show/v0062282-97#Text

IAEA, (2010). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and fresh-water environments. Vienna. IAEA-TRS-472. http://www-pub.iaea.org/MTCD/Publications/PDF/trs472_web.pdf

Gudkov D. I., Kaglyan A. Ye., Nazarov A. B., Klenus V. G. (2008). Dynamics of the Content and Distribution of the Main Dose Forming Radionuclides in Fishes of the Exclusion Zone of the Chernobyl NPS. Begell House, Inc. Hydrobiological Journal. 44(5), 87-104.

Kaglyan A.E., Gudkov D.Y., Klenus V.H., Shyrokaya Z.O., Pomortseva N.A., Yurchuk L.P., Nazarov A.B. (2012). Radyonuklydy v aboryhennykh vydakh ryb chernobylʹskoy zony otchuzhdenyya. Yaderna fizyka ta enerhetyka. 13(3), 306-315.

Kaglyan O. YE., Gudkov D. I., Kiryeyev S. I., Klenus V. H., Byelyayev V. V., Yurchuk L. P., Drozdov V. V., Gupalo O. O. (2021). Dynamika pytomoyi aktyvnosti 90Sr i 137Cs u predstavnykiv ikhtiofauny vodoym Chornobylʹsʹkoyi zony vidchuzhennya. Yaderna fizyka ta enerhetyka. 22(1), 62-73. https://doi.org/10.15407/jnpae2021.01.062

Kaglyan A.Ye., Gudkov D.I., Kireyev S.I., Yurchuk L.P., Gupalo Ye.A. (2019). Fish of the Chernobyl exclusion zone: modern levels of radionuclide contamination and radiation doses. Hydrobiological Journal. 55(5), 81–99. https://doi.org/10.1615/HydrobJ.v55.i5.80

Teien H.-C., Kashparova O., Salbu B., Levchuk S., Protsak V., Eide D. M., Jensen K. A., Kashparov V. (2021). Seasonal changes in uptake and depuration of 137Cs and 90Sr in silver Prussian carp (Carassius gibelio) and common rudd (Scardinius erythrophthalmus). Science of the Total Environment. 786, 147280, https://doi.org/10.1016/j.scitotenv.2021.147280

Pavlenko P. M., Kashparova O. V., Levchuk S. YE., Hrechaniuk M. O., Gudkov I. M., Kashparov V. O. (2021). Vplyv dodatkovoho "chystoho" hoduvannya na vmist 90Sr i 137Cs v karasyakh sriblyastykh (Carassius gibelio) u Chornobylʹsʹkiy zoni vidchuzhennya. Yaderna fizyka ta enerhetyka. 22(3), 272-283 (Ukr). https://doi.org/10.1016/j.scitotenv.2021.147280

Kashparova O. et al. (2022). Clean feed as countermeasure to reduce the 137Cs and 90Sr levels in fish from contaminated lakes. J. Environ. Radioact. (Submitted).

Yankovich, T.L., Beresford, N.A., Wood, M.D. et al., (2010). Whole-body to tissue concentration ratios for use in biota dose assessments for animals. Radiation and Environmental Biophysics. 49, 549–565 https://doi.org/10.1007/s00411-010-0323-z

Smith J.T. (2006). Modelling the dispersion of radionuclides following short duration releases to rivers Part 2. Uptake by fish. Science of the Total Environment. 368(2-3), 502–518. https://doi.org/10.1016/j.scitotenv.2006.03.011

Khomutinin YU. V., Kashparov V. A., Kuz'menko A. V. (2011). Zavisimost' koeffitsiyentov nakopleniya 137Cs i 90Sr ryboy ot soderzhaniya kaliya i kal'tsiya v vode presnovodnogo vodoyema. Radiatsionnaya biologiya. Radioekologiya. 51(3), 374–384

Khomutinin YU.V., Kashparov V. A., Kuz'menko A.V., Pavlyuchenko V.V. (2013). Prognoz dinamiki i riska prevysheniya dopustimogo soderzhaniya 137Cs i 90Sr v rybe Kiyevskogo vodokhranilishcha na pozdney faze Chernobyl'skoy avarii. Radiatsionnaya biologiya. Radioekologiya. 53(4), 411–427.

Smith J.T. et al. (2000). Radiocaesium concentration factors of chernobyl-contaminated fish: a study of the influence of potassium, and “blind” testing of a previously developed model. Journal of Environmental Radioactivity. Vol. 48. P. 359–369.

Kashparova Ye. V., Teiyen G.-KH., Levchuk S. Ye., Protsak V. P., Korepanova K. D., Salbu B., Ibatullin I. I., Kashparov V. A. (2020). Dinamika postupleniya 137Cs iz vody v organizm serebryanogo karasya (Carassius gibelio). Yaderna fízika ta yenergetika. 21(1), 64-74 https://doi.org/10.15407/jnpae2020.01.064

Kashparova Ye. V., Teiyen G.-KH., Levchuk S. Ye., Pavlenko V. S., Salbu B., Kashparov V. A. (2019). Dinamika vyvedeniya 137Cs iz organizma serebryanogo karasya (Carassius gibelio) pri raznoy temperature vody. Yaderna fízika ta yenergetika. 20(4), 411-419 https://doi.org/10.15407/jnpae2019.04.411

Hrechaniuk M.O., Kashparova O. V., Pavlenko P. M., Levchuk S. YE., Maksin V. I., Kashparov V. O. (2022). Radioaktyvne zabrudnennya i dozy vnutrishnʹoho oprominennya ryby v ozeri Hlyboke Chornobylʹsʹkoyi zony vidchuzhennya. Naukovi dopovidi NUBiP Ukrayiny, №3 (97).

Kashparova O. V., Levchuk S. E., Khomutinin Yu. V., Pavlenko P. M., Hrechaniuk, M. O., Kashparov V. O. 2022. The uptake and excretion rate of 137Cs from the silver prussian carp (Carassius gibelio) at different feeding routine. Nucl. Phys. At. Energy. 23(1), 57-63 https://doi.org/10.15407/jnpae2022.01.057

Khomutinin YU.V., Kashparov V.A. (2016). Optimizatsiya otbora prob dlya otsenki udel'noy aktivnosti i koeffitsiyentov nakopleniya 137Cs i 90Sr ryboy. Nucl. Phys. At. Energy. Vol. 17(2). C. 189–198 https://doi.org/10.15407/jnpae2016.02.189

Nabyvanetsʹ B. Y., Osadchyy V. I., Osadcha N. M., Nabyvanetsʹ YU. B. (2007). Analitychna khimiya poverkhnevykh vod. Kyyiv S. 119-128.

Published

2022-10-21

Issue

Section

Biology, biotechnology, ecology