Application of artificial intelligence neural networks in photogrammetric processing of digital data

Authors

  • Ye. Butenko National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • A. Volontyr Cherkasy State Technological University image/svg+xml
  • O. Kutsenko National University of Life and Environmental Sciences of Ukraine image/svg+xml

DOI:

https://doi.org/10.31548/zemleustriy2025.03.0%25p

Keywords:

neural network, artificial intelligence, photogrammetry, machine learning, point cloud, orthophotomap, 3D model, digital image

Abstract

The article examines the impact of artificial intelligence neural network algorithms on the process of photogrammetric processing of digital images and the formation of dense point clouds.

It is noted that the integration of machine learning algorithms, in particular deep learning, allows you to automate key processing stages, increase the accuracy of object classification, optimize geometric correction of images and improve the quality of final geospatial products in the form of an orthophotomap of the area.

The main stages of the photogrammetric process are described: from collecting primary data to forming orthophotomaps and three-dimensional terrain models. Particular attention is paid to the role of the neural network in improving the density of the point cloud due to the correct interpretation of points on digital images, object classification and reducing the influence of the human factor.

The challenges associated with the need for large volumes of high-quality training data are identified. The prospects for the application of AI neural networks in photogrammetry and the need for further research in this direction are substantiated.

Keywords: neural network, artificial intelligence, photogrammetry, machine learning, point cloud, orthophotomap, 3D model, digital image.

The article considers the impact of artificial intelligence neural network algorithms on the process of photogrammetric processing of digital images and the formation of dense point clouds.

It is noted that the integration of machine learning algorithms, in particular deep learning, allows you to automate key processing stages, increase the accuracy of object classification, optimize geometric correction of images and improve the quality of final geospatial products in the form of an orthophotomap of the terrain.

The main stages of the photogrammetric process are described: from collecting primary data to forming orthophotomaps and three-dimensional terrain models. Particular attention is paid to the role of the neural network in improving the density of the point cloud due to the correct interpretation of points on digital images, object classification and reducing the influence of the human factor.

The challenges associated with the need for large volumes of high-quality training data are identified. The prospects for the application of artificial intelligence neural networks in photogrammetry and the need for further research in this direction are substantiated.

Keywords: neural network, artificial intelligence, photogrammetry, machine learning, point cloud, orthophotomap, 3D model, digital image.

Author Biographies

  • Ye. Butenko, National University of Life and Environmental Sciences of Ukraine
    Candidate of Economic Sciences, Associate Professor
  • A. Volontyr, Cherkasy State Technological University
    senior teacher
  • O. Kutsenko, National University of Life and Environmental Sciences of Ukraine
    applicant for the third educational and scientific level of higher education

References

1. Butenko, E., & Kulakovskyi, O. (2018). Zastosuvannia bezpilotnykh litaiuchukh system pry vyrishenni zadach zemleustroiu [The use of unmanned flying systems to solve the land management problems]. Land Management, Cadastre and Land Monitoring, 4, 68-73. DOI: https://doi.org/10.31548/zemleustriy2018.04.09

2. Hlotov, V., & Hunina, A. (2014). Analiz mozhlyvostei zastosuvannia bezpilotnykh litalnykh aparativ dlia aeroznimalnykh protsesiv [Analysis of the possibility of using unmanned aerial vehicles for surveying processes]. Fotohrammetriia, heoinformatsiini systemy ta kartohrafiia. Available at: http://ena.lp.edu.ua/bitstream/ntb/25100/1/16-65-70.pdf

3. Irschara, A., Kaufmann, V., Klopschitz, M., Bischof, H., & Leberl, F. (2010). Towards fully automatic photogrammetric reconstruction using digital images taken from UAVs. In Proceedings of ISPRS Symposium, 100 Years ISPRS - Advancing Remote Sensing Science.

4. Dorosh, O., Butenko, Y., Kolisnyk, H., Dorosh, A., & Kupriianchyk, I. (2021). The use of UAVs: development, perspectives and application. AgroLife Scientific Journal, 10(2), 172–182. DOI: https://doi.org/10.17930/AGL202127

5. Remondino, F., Barazzetti, L., Nex, F., & Scaioni, M. (2011). UAV photogrammetry for mapping and 3D modelling – Current status and future perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22. DOI: https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011

6. Sauerbier, M., Siegrist, E., Eisenbeiss, H., & Demir, N. (2012). The practical application of UAV-based photogrammetry under economic aspects. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22. DOI: https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-45-2011

7. Butenko, Ye. V., & Poshtar, A. M. (2024). Intehratsiia neiromerezh u prohramy fotogrammetrychnoi obrobky [Integration of neural networks into photogrammetric processing programs]. In Suchasni vyklyky v upravlinni zemelnymy resursamy: Proceedings of the 1st International Scientific and Practical Conference (Kyiv, June 7, 2024) (pp. 152–155). Kyiv: Editorial and Publishing Department of NUBiP of Ukraine. Available at: https://nubip.edu.ua/sites/default/files/u254/materiali_i_mizhnarodnoyi_naukovo_praktichnoyi_konferenciyi_suchasni.pdf

8. Kyiv: Editorial and Publishing Department of NUBiP of Ukraine. Available at: https://nubip.edu.ua/sites/default/files/u254/materiali_i_mizhnarodnoyi_naukovo_praktichnoyi_konferenciyi_suchasni.pdf

9. Pokataiev, P. (2021). Intehratsiia shtuchnoho intelektu v upravlinnia protsesamy urbanizatsii v Ukraini [Integration of artificial intelligence into urbanization process management in Ukraine]. Scientific Notes of V.I. Vernadsky Taurida National University. Series: Public Administration and Administration, 34(73), 203–207.

10. Probesto. (n.d.). Guide to using artificial intelligence in data analysis. Available at: https://probesto.com/ua/posibnyk-z-vykorystannia-shtuchnoho-int/

11. Gigacloud. (n.d.). What is machine learning: how it works and where it is used. Available at: https://gigacloud.ua/articles/shho-take-mashynne-navchannya-yak-praczyuye-ta-de-vykorystovuyetsya/

12. Butenko, Ye. V., & Krasnosilska, A. A. (2024). Intehratsiia shtuchnoho intelektu u protsesy fotogrammetrychnoi obrobky danykh [Integration of artificial intelligence into photogrammetric data processing]. In Suchasni vyklyky v upravlinni zemelnymy resursamy: Proceedings of the 1st International Scientific and Practical Conference. 45–48. Kyiv: NUBiP of Ukraine. Available at: https://dglib.nubip.edu.ua/items/2ca7fb75-65b8-496d-9aa3-64bdaaccd0ab

13. Shevchenko, A. I., et al. (2023). Stratehiia rozvytku shtuchnoho intelektu v Ukraini [Strategy for the development of artificial intelligence in Ukraine]. Monograph. Kyiv: IPSHI. Available at: https://jai.in.ua/index.php/en/issues?paper_num=1545

14. Huraliuk, A. (2023). Shtuchnyi intelekt yak innovatsiina tekhnolohiia v pedahohichnykh doslidzhenniakh [Artificial intelligence as an innovative technology in pedagogical research]. Visnyk NAPN Ukrainy, (18), 67–79. Available at: https://lib.iitta.gov.ua/id/eprint/739798/1/VNIASO-AHS%20of%20Edu%26Sci-RB-18-2023-67-79.pdf

15. Abbood, S. A., et al. (2024). Artificial intelligence techniques in photogrammetry application: A review. AIP Conference Proceedings, 3105, Article 050057. Available at: https://pubs.aip.org/aip/acp/article/3105/1/050057/3308891

16. Qin, R., & Gruen, A. (2021). The role of machine intelligence in photogrammetric 3D modeling – an overview and perspectives. International Journal of Digital Earth, 14(1), 15–31. Available at: https://www.tandfonline.com/doi/pdf/10.1080/17538947.2020.1805037

17. Remondino, F., & Qin, R. (Eds.). (n.d.). Photogrammetry meets AI – Special Issue. Remote Sensing. MDPI. Available at: https://www.mdpi.com/journal/remotesensing/special_issues/W5GGJN7OUH

18. Wang, M., Cheng, X., Pan, J., Pi, Y., & Xiao, J. (2024). Large models enabling intelligent photogrammetry. Acta Geodaetica et Cartographica Sinica, 53(10), 1955–1966. Available at: http://xb.chinasmp.com/EN/10.11947/j.AGCS.2024.20240068

19. Hryhoriev, O. V., Kolesnykova, T. A., & Yatsenko, L. O. (n.d.). Korektsiia kolirnoho balansu tsyfrovoho zobrazhennia na osnovi statystychnykh kharakterystyk [Correction of digital image color balance based on statistical characteristics]. Kharkiv National University of Radio Electronics. Available at: https://openarchive.nure.ua/bitstreams/f29af054-3ef7-4e08-980e-9b999b12ef67/download

Downloads

Published

2025-09-30

Issue

Section

Geoinformation technologies for modeling the state of geosystems