FATTY ACID IN LIPID OF CAT BONE MARROW MESENCHIMAL STEM CELLS

Authors

  • L. V. Kladnytska National University of Life and Environmental Sciences of Ukraine
  • A. Y. Mazurkevych National University of Life and Environmental Sciences of Ukraine
  • V. V. Danchuk National University of Life and Environmental Sciences of Ukraine
  • S. V. Velychko National University of Life and Environmental Sciences of Ukraine
  • S. V. Midyk National University of Life and Environmental Sciences of Ukraine
  • V. B. Danilov National University of Life and Environmental Sciences of Ukraine

DOI:

https://doi.org/10.31548/dopovidi2016.04.025

Keywords:

mesenchymal stem cells, bone marrow, cat, saturated, unsaturated fatty acids

Abstract

Defined lipids fatty acids composition of cat bone marrow mesenchymal stem cells. Mesenchymal stem cells (MSCs) obtained from cat bone marrow. The process of culturing MSCs cat was performed in CO2 incubator at 5% CO2 and temperature of 37 °C in DMEM medium with the addition of 1% antibiotic-antimycotics and 15-20% fetal bovine serum. When the monolayer confluency was 70-90%, cells removed and carried subсultivation  3-4 times to reduce the heterogeneity of  cells culture. To determine the fatty acid composition of lipids MSCs used 4-th passage.

For research content of fatty acids in lipids cat MSCs was performed by the method of gas-liquid chromatography. Bone marrow stem cells in cat contain lipids short-, medium- and longchain fatty acids. In the stem cells of the cat bone marrow  was found 18 fatty acids,  in saturated – most quantity  of palmitic acid – 32.4 , in monounsaturated - oleic acid – 23.15, in polyunsaturated – linoleic acid  – 8.51% . The smallest quantity  in the cells was found cis-8,11,14-eykozatriyenic acid –0,01%. The total amount of saturated fatty acids in MSCs was 64,88,  unsaturated fatty acids – 35,12%. Monoyenic fatty acids identified in the number of 25,71, and polyenes - 9,41%. Saturation index – 1,85. The index value n3 fatty acids to n6 MSC cat is 0,08.

 

Author Biographies

L. V. Kladnytska, National University of Life and Environmental Sciences of Ukraine

кандидат ветеринарних наук, доцент

A. Y. Mazurkevych, National University of Life and Environmental Sciences of Ukraine

доктор ветеринарних наук, професор

V. V. Danchuk, National University of Life and Environmental Sciences of Ukraine

доктор сільськогосподарських наук,  професор

S. V. Velychko, National University of Life and Environmental Sciences of Ukraine

кандидат біологічних наук

S. V. Midyk, National University of Life and Environmental Sciences of Ukraine

кандидат ветеринарних наук

V. B. Danilov, National University of Life and Environmental Sciences of Ukraine

кандидат ветеринарних наук, доцент

References

Copland I.B., Galipeau J. Death and inflammation following somatic cell transplantation. Semin Immunopathol. 2011; 33: 535-550.

https://doi.org/10.1007/s00281-011-0274-8

Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9: 1195-1201. [PubMed]

https://doi.org/10.1038/nm912

Toma C., Wagner W.R., Bowry S., Schwartz A., Villanueva F. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ Res. 2009;104: 398-402. doi:10.1161/CIRCRESAHA.108.187724 [PMC free article] [PubMed]

https://doi.org/10.1161/CIRCRESAHA.108.187724

Chung S., Arrell D.K., Faustino R.S., Terzic A., Dzeja P.P. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol. 2010;48: 725-734.

https://doi.org/10.1016/j.yjmcc.2009.12.014

Chung S., Dzeja P.P., Faustino R.S., Perez-Terzic C., Behfar A., Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1: S60-67.[PMC free article] [PubMed]

https://doi.org/10.1038/ncpcardio0766

. Sutendra G., Bonnet S., Rochefort G., Haromy A., Folmes K.D., Lopaschuk G.D., et al. Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med. 2010;2: 44ra58

https://doi.org/10.1126/scitranslmed.3001327

Wanet A., Remacle N., Najar M., Sokal E., Arnould T., Najimi M., et al. Mitochondrial remodeling in hepatic differentiation. Int J Biochem Cell Biol. 2014;54: 174-185.

https://doi.org/10.1016/j.biocel.2014.07.015

Warburg O. On respiratory impairment in cancer cells. Science. 1956;124: 269-270. [PubMed]

https://doi.org/10.1126/science.124.3215.267

Warburg O., Posener K., Negelein E. On the metabolism of carcinoma cells. Biochemische Zeitschrift. 1924;152: 309-344.

Vander Heiden M.G., Plas D.R., Rathmell J.C., Fox C.J., Harris M.H., Thompson C.B.. Growth Factors Can Influence Cell Growth and Survival through Effects on Glucose Metabolism. Molecular and Cellular Biology. 2001;21: 5899-5912. [PMC free article] [PubMed] ]

https://doi.org/10.1128/MCB.21.17.5899-5912.2001

Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11: 37-51. [PubMed]

https://doi.org/10.1016/j.ccr.2006.10.020

Kaplon J., Zheng L., Meissl K., Chaneton B., Selivanov V.A., Mackay G., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature. 2013;498: 109-112.

https://doi.org/10.1038/nature12154

Abu Dawud R., Schreiber K., Schomburg D., Adjaye J. Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures. PLoS One. 2012;7: e39896

https://doi.org/10.1371/journal.pone.0039896

Fatty acid composition of membrane bilayers: Importance of diet polyunsaturated fat balance Sarah K. Abbott., Paul L. Else., Taleitha A. Atkins., A.J. Hulbert. Biochimica et Biophysica Acta (BBA) - Biomembranes Volume 1818, Issue 5, May 2012, Pages 1309-1317 ]

https://doi.org/10.1016/j.bbamem.2012.01.011

Kang J.X., Wan J.B., He C. Concise review: Regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells. 2014 May;32(5):1092-8.

https://doi.org/10.1002/stem.1620

Fillmore N., Huqi A., Jaswal J.S., Mori J., Paulin R., Haromy A., Onay-Besikci A. /Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival. PLoS One. 2015 Mar 13;10(3):e0120257. eCollection 2015.

https://doi.org/10.1371/journal.pone.0120257

Lu J., Wang Q., Huang L., Dong H., Lin L., Lin N., et al. Palmitate causes endoplasmic reticulum stress and apoptosis in human mesenchymal stem cells: prevention by AMPK activator. Endocrinology. 2012;153: 5275-5284.

https://doi.org/10.1210/en.2012-1418

Listenberger L.L., Ory D.S., Schaffer J.E. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 2001;276: 14890-14895. [PubMed]

https://doi.org/10.1074/jbc.M010286200

Miller T.A., LeBrasseur N.K., Cote G.M., Trucillo M.P., Pimentel D.R., Ido Y., et al. Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochem Biophys Res Commun. 2005;336: 309-315. [PubMed]

https://doi.org/10.1016/j.bbrc.2005.08.088

Turk H.F., Chapkin R.S. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2013;88:43-47.

https://doi.org/10.1016/j.plefa.2012.03.008

Yun S.P., Ryu J.M., Jang M.W. et al. Interaction of profiling-1 and F-actin via a beta-arrestin-1/JNK signaling pathway involved in prostaglandin E(2)-induced human mesenchymal stem cells migration and proliferation. J Cell Physiol 2011;226:559-571

https://doi.org/10.1002/jcp.22366

Rajasingh J., Bright J.J. 15-Deoxy-delta(12,14)-prostaglandin J(2) regulates leukemia inhibitory factor signaling through JAK-STAT pathway in mouse embryonic stem cells. Exp Cell Res 2006;312:2538-2546.

https://doi.org/10.1016/j.yexcr.2006.04.010

Chapkin R.S., Kim W., Lupton J.R. et al. Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins Leukot Essent Fatty Acids 2009;81:187-191

https://doi.org/10.1016/j.plefa.2009.05.010

Iwahashi H., Takeshita A., Hanazawa S. Prostaglandin E2 stimulates AP-1-mediated CD14 expression in mouse macrophages via cyclic AMP-dependent protein kinase A. J Immunol 2000;164:5403-5408.].

https://doi.org/10.4049/jimmunol.164.10.5403

Lee M.Y., Ryu J.M., Lee S.H. et al. Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J Lipid Res2010;51:2082-2089.

https://doi.org/10.1194/jlr.M001545

Yamazaki S., Iwama A., Takayanagi S. et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J 2006;25:3515-3523

https://doi.org/10.1038/sj.emboj.7601236

Folch J., Lees M., Sloane-Stanley G.H. (1957): A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497-509

Сinyak, K.M., Оrgel, М. Y., Кryk, V. I. (1976). Method for the preparation of blood lipids for gas chromatographic studies. Lab. delo, 1, 37-41. (In Russian).

Christie, W. W.(1982).Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids. Oxford: Pergamon Press

Grundy S. M. (1997). What is the desirable ratio of saturated, polyunsaturated, and monounsaturated fatty acids in the diet? / S. M.Grundy // Am. J. Clin. Nutr., Vol.66, 988-990.

https://doi.org/10.1093/ajcn/66.4.988S

Issue

Section

Veterinary medicine, quality and safety of livestock products