Satellite monitoring in the implementation of the agricultural development concept in an urbanized environment
DOI:
https://doi.org/10.31548/Abstract
Cities, due to their urbanization and human activity, create heat islands that have the potential for agricultural production. Heat emissions contribute to the extension of the growing season, enabling the cultivation of technical crops even on contaminated soils, which are important for bioenergy and biogas production. The technologies for monitoring heat islands using satellites are discussed, which allow the identification of areas with the highest heat emissions. Research in Kyiv showed that the most stable heat emissions occur in the spring-autumn period, when the temperature ranges from 5 to 25°C, which is optimal for plant development. Satellite monitoring technologies not only detect thermal anomalies but also identify optimal locations for green planting that help reduce the negative impact of the urban environment on vegetation. The developed software solution based on satellite data helps track changes in surface temperature and their effect on vegetation, enabling better planning of agricultural production in urban areas. The example of the Lavina shopping and entertainment center in Kyiv revealed stable heat emissions that can be used for the development of urban agriculture. Proposed crops adapted to these conditions can optimize the use of heat for plant cultivation and provide ecological benefits for the city. The conclusions confirm the significant potential of heat islands for the development of urban agriculture, which contributes to improving ecology in megacities and providing local residents with high-quality products.
Key words: satellites, heat islands, urban farming
References
1. C.Tapia, L.Randall, S.Wang, & L.Aguiar Borges, (2021). Monitoring the contribution of urban agriculture to urban sustainability: an indicator-based framework. Sustainable Cities and Society, 74, 103130. doi:10.1016/j.scs.2021.103130;
2. S.Ghosh (2021). Urban agriculture potential of home gardens in residential land uses: A case study of regional City of Dubbo, Australia. Land Use Policy, 109, 105686. doi:10.1016/j.landusepol.2021.105686;
3. E.Ustaoglu, S.Sisman & A.C.Aydınoglu (2021). Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques. Ecological Modelling, 455, 109610. doi:10.1016/j.ecolmodel.2021.109610;
4. I.V.Hume, D.M.Summers & T.R.Cavagnaro, (2021). Self-sufficiency through urban agriculture: Nice idea or plausible reality? Sustainable Cities and Society, 68, 102770. doi:10.1016/j.scs.2021.102770;
5. Till Weidner & Aidong Yang (2020). The potential of urban agriculture in combination with organic waste valorization: Assessment of resource flows and emissions for two european cities. Journal of Cleaner Production, 244, 118490. doi:10.1016/j.jclepro.2019.118490;
6. Saha, M., & Eckelman, M. J. (2017). Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landscape and Urban Planning, 165, 130–141. doi:10.1016/j.landurbplan.2017.04.015;
7. Mathias Schaefer & Nguyen Xuan Thinh (2019) Evaluation of Land Cover Change and Agricultural Protection Sites: A GIS and Remote Sensing Approach for Ho Chi Minh City, Vietnam. Heliyon, 5, Issue 5, e01773, doi:10.1016/j.heliyon.2019.e01773;
8. Wenyou Hu, Huifeng Wang, Lurui Dong, Biao Huang, Ole K. Borggaard, Hans Christian Bruun Hansen, Yue He, Peter E. Holm (2018) Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach, Environmental Pollution, 237, 650-66, doi: 10.1016/j.envpol.2018.02.070;
9. Amos, Caleb Christian; Rahman, Ataur; Karim, Fazlul; Gathenya, John Mwangi (2018). A Scoping Review of Roof Harvested Rainwater Usage in Urban Agriculture: Australia and Kenya in Focus. Journal of Cleaner Production, S0959652618324508–. doi:10.1016/j.jclepro.2018.08.108;
10. Angelica Mendoza Beltran, Kelzy Jepsen, Martí Rufí-Salís, Sergi Ventura, Cristina Madrid Lopez, Gara Villalba (2022) Mapping direct N2O emissions from peri-urban agriculture: The case of the Metropolitan Area of Barcelona. Science of The Total Environment, 822, 153514, doi:10.1016/j.scitotenv.2022.153514;
11. Mohammad Karimi Firozjaei, Solmaz Fathololoumi, Majid Kiavarz, Jamal Jokar Arsanjani, Seyed Kazem Alavipanah (2020) Ecological Indicators, 109, 105816, doi:10.1016/j.ecolind.2019.105816;
12. Peter Kabano, Sarah Lindley, Angela Harris (2020) Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landscape and Urban Planning, 206, 103989, doi:10.1016/j.landurbplan.2020.103989;
13. O.V.Hudz, A.D.Karpiuk, B.L.Holub, A.O.Dudnyk, A.V.Bushma, (2021) Optical sensor for the detection of mycotoxins, Semiconductor Physics, Quantum Electronics and OptoelectronicsThis link is disabled., 2021, 24(2), pp. 227–233, doi: /10.15407/spqeo24.02.227;
14. Ee Ping Kho, Sing Ngie David Chua, Soh Fong Lim, Lee Chung Lau, Mohd Tirmidzi Ngapdul Gani (2022) Development of young sago palm environmental monitoring system with wireless sensor networks. Computers and Electronics in Agriculture, 193, 106723. doi: 10.1016/j.compag.2022.106723;
15. Bella Golub, Aleksandr Hudz, Alla Dudnyk, Aleksandr Bushma (2019) Production of Biotechnological Objects using Business Intelligence. 2019 9th International Conference on Advanced Computer Information Technologies (ACIT), 200-204, doi: 10.1109/ACITT.2019.8780061;
16. Elad Levintal, Kenneth Lee Kang, Lars Larson, Eli Winkelman, Lloyd Nackley, Noam Weisbrod, Joh S. Selker, Chester J. Udell (2021) eGreenhouse: Robotically positioned, low-cost, open-source CO2 analyzer and sensor device for greenhouse applications. HardwareX, 9, e00193, doi:10.1016/j.ohx.2021.e00193;
17. A.Dudnyk, V.Lysenko, N.Zaets, D.Komarchuk, T.Lendiel and I.Yakymenko (2018), "Intelligent Control System of Biotechnological Objects with Fuzzy Controller and Noise Filtration Unit," 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 586-590, doi:10.1109/INFOCOMMST.2018.8632007;
18. Sophie A.Nitoslawski, Nadine J.Galle van den Bosch, Cecil Konijnendijk; Steenberg, James W.N. (2019). Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustainable Cities and Society, 101770. doi:10.1016/j.scs.2019.101770;
19. S.Joimel, J.Cortet, C.C.Jolivet, N.P.A.Saby, E.D.Chenot, P.Branchu, J.N.Consalès, C. Lefort, J.L.Morel, C.Schwartz (2016) Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Science of The Total Environment, 545–546, рр. 40-47, doi:10.1016/j.scitotenv.2015.12.035;
20. V.М.Polishchuk, S.А.Shvorov, I.V.Flonts, T.S.Davidenko, Ye.O. Dvornyk (2021) Increasing the Yield of Biogas and Electricity during Manure Fermentation Cattle by Optimally Adding Lime to Extruded Straw. Problemele Energeticii regionale. 1, Iss. 49. рр. 73-85, doi:10.52254/1857-0070.2021.1-49.02;
21. V.М.Polishchuk, S.А.Shvorov, М.M.Zablodskiy, P.P.Kucheruk, T.S.Davidenko, Ye.O. Dvornyk (2021) Effectiveness of Adding Extruded Wheat Straw to Poultry Manure to Increase the Rate of Biogas Yield. Problemele Energeticii regionale. 3, Iss. 51. рр. 111-124. doi:10.52254/1857-0070.2021.3-51.10;
22. J.Liu, L.Zhang, Q.Zhang, G.Zhang, & J.Teng (2021). Predicting the surface urban heat island intensity of future urban green space development using a multi-scenario simulation. Sustainable Cities and Society, 66, 102698. doi:10.1016/j.scs.2020.102698;
23. Qiu Kuanbiao, Jia Baoquan (2019). The roles of landscape both inside the park and the surroundings in park cooling effect. Sustainable Cities and Society, 101864. doi:10.1016/j.scs.2019.101864;
24. A.Onishi, X.Cao, T.Ito, F.Shi, & H.Imura (2010). Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban Forestry & Urban Greening, 9(4), 323–332. doi:10.1016/j.ufug.2010.06.002;
25. A.M.Hunter, N.S.G.Williams, J.P.Rayner, L.Aye, D.Hes, & S.J.Livesley (2014). Quantifying the thermal performance of green façades: A critical review. Ecological Engineering, 63, 102–113. doi:10.1016/j.ecoleng.2013.12.021;
26. H.Yin, F.Kong, A.Middel, I.Dronova, H.Xu & P.James (2017). Cooling effect of direct green façades during hot summer days: An observational study in Nanjing, China using TIR and 3DPC data. Building and Environment, 116, 195–206. doi:10.1016/j.buildenv.2017.02.020;
27. K.V.Abhijith, Prashant Kumar, John Gallagher, Aonghus McNabola, Richard Baldauf, Francesco Pilla, Brian Broderick, Silvana Di Sabatino & Beatrice Pulvirenti (2017). Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment, 162, 71–86. doi:10.1016/j.atmosenv.2017.05.01;
28. Esraa Elmarakby, Marwa Khalifa, Abeer Elshater & Samy Afifi (2022) Tailored methods for mapping urban heat islands in Greater Cairo Region. Ain Shams Engineering Journal, 13 (2), 101545, doi:10.1016/j.asej.2021.06.030;
29. Garegin Tepanosyan, Vahagn Muradyan, Azatuhi Hovsepyan, Gleb Pinigin, Andrey Medvedev & Shushanik Asmaryan (2021) Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Building and Environment, 187, 107390, doi:10.1016/j.buildenv.2020.107390;
30. Bijay Halder, Jatisankar Bandyopadhyay, Papiya Banik (2021) Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustainable Cities and Society, 74, 103186. doi:10.1016/j.scs.2021.103186;
31. N. Pasichnyk, D. Komarchuk, O. Opryshko, S. Shvorov, V. Reshetiuk and B. Oksana, "Technologies for Environmental Monitoring of the City," 2021 IEEE 16th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), 2021, pp. 40-43, doi:10.1109/CADSM52681.2021.9385213;
32. Yeran Sun, Shaohua Wang, Yu Wang (2020) Estimating local-scale urban heat island intensity using nighttime light satellite imageries. Science of The Total Environment, 763, 144224. doi:10.1016/j.scitotenv.2020.144224;
33. Di Yang, Weixin Luan, Lu Qiao, Mahardhika Pratama (2020) Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery. Applied Energy, 268, 114696. doi:10.1016/j.apenergy.2020.114696;
34. Yue Chang, Jingfeng Xiao, Xuxiang Li, Steve Frolking, Decheng Zhou, Annemarie Schneider, Qihao Weng, Peng Yu, Xufeng Wang, Xing Li, Shuguang Liu, Yiping Wu (2021) Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites. Science of The Total Environment, 763, 144224. doi:10.1016/j.scitotenv.2020.144224;
35. Yuanmao Zheng, Lina Tang, Haowei Wang (2021) An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. Journal of Cleaner Production, 328, 129488. doi:10.1016/j.jclepro.2021.129488;
36. Sorin Cheval, Alexandru Dumitrescu, Adrian Irașoc, Monica-Gabriela Paraschiv, Michael Perry, Darren Ghent (2022) MODIS-based climatology of the Surface Urban Heat Island at country scale (Romania). Urban Climate, 41, 101056. doi:10.1016/j.uclim.2021.101056;
37. TC Chakraborty, Xuhui Lee, Sofia Ermida, Wenfeng Zhan (2021) On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sensing of Environment, 265, 112682, doi: 10.1016/j.rse.2021.112682;
38. Terence Darlington Mushore, John Odindi, Timothy Dube, Trylee Nyasha Matongera, Onisimo Mutanga (2017) Remote Sensing Applications: Society and Environment, 8, рр.83-93. doi:10.1016/j.rsase.2017.08.001;
39. Boutaina Sebbah, Otmane Yazidi Alaoui, Miriam Wahbi, Mustapha Maâtouk, Nizar Ben Achhab (2021) QGIS-Landsat Indices plugin (Q-LIP): Tool for environmental indices computing using Landsat data. Environmental Modelling & Software, 137, 104972. doi: 10.1016/j.envsoft.2021.104972;
40. You-Ren Wang, Bjørn H. Samset, Frode Stordal, Anders Bryn, Dag O. Hessen (2023) Past and future trends of diurnal temperature range and their correlation with vegetation assessed by MODIS and CMIP6, Science of The Total Environment, Vol. 904, 15 December 2023, 166727, doi: 10.1016/j.scitotenv.2023.166727.
41. Xueling Zhang, Alimujiang Kasimu, Hongwu Liang, Bohao Wei, Yimuranzi Aizizi, Fuqiang Han (2023) Mechanism analysis of vegetation phenology in an urban agglomeration in an arid zone driven by seasonal land surface temperatures, Urban Climate, Vol. 53, January 2024, 101795, doi: 10.1016/j.uclim.2023.101795.
42. Marie Van Espen, James H. Williams, Fátima Alves, Yung Hung, Dirk C. de Graaf, Wim Verbeke (2023) Beekeeping in Europe facing climate change: A mixed methods study on perceived impacts and the need to adapt according to stakeholders and beekeepers. Science of The Total Environment. Vol. 888, 25 August 2023, 164255, doi: 10.1016/j.scitotenv.2023.164255.
43. Markus Simbürger, Sabrina Dreisiebner-Lanz, Michael Kernitzkyi, Franz Prettenthaler (2022) Climate risk management with insurance or tax-exempted provisions? An empirical case study of hail and frost risk for wine and apple production in Styria. International Journal of Disaster Risk Reduction. Vol. 80, 1 October 2022, 103216, doi: 10.1016/j.ijdrr.2022.103216
44. N. Pasichnyk, D. Komarchuk, H. Korenkova, S. Shvorov, O. Opryshko, N. Kiktev. Spectral-spatial analysis of data of images of plantings for identification of stresses of technological character. 2nd International Conference on Intellectual Systems and Information Technologies (ISIT 2021) co-located with 1st International Forum "Digital Reality" (DRForum 2021). CEUR Workshop Proceedings, 2022, 3126, pp. 305-312. http://ceur-ws.org/Vol-3126/paper47.pdf
45. Faichuk, O.; Voliak, L.; Hutsol, T.; Glowacki, S.; Pantsyr, Y.; Slobodian, S.; Szeląg-Sikora, A.; Gródek-Szostak, Z. European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU. Sustainability 2022, 14, 3712.
46. Ciot, M.-G. Implementation Perspectives for the European Green Deal in Central and Eastern Europe. Sustainability 2022, 14, 3947. https://doi.org/10.3390/su14073947
47. Vindel, J.M.; Trincado, E.; Sánchez-Bayón, A. European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects. Energies 2021, 14, 1994.
48. O. Kalivoshko; V. Kraevsky; K. Burdeha; I. Lyutyy; N. Kiktev. The Role of Innovation in Economic Growth: Information and Analytical Aspect. 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), 05-07 October 2021, Kharkiv, pp. DOI: 10.1109/PICST54195.2021.9772201
49. Khort, D.; Kutyrev, A.; Kiktev, N.; Hutsol, T.; Glowacki, S.; Kuboń, M.; Nurek, T.; Rud, A.; Gródek-Szostak, Z. Automated Mobile Hot Mist Generator: A Quest for Effectiveness in Fruit Horticulture. Sensors 2022, 22, 3164. https://doi.org/10.3390/s22093164
50. Tryhuba, A.; Hutsol, T.; Kuboń, M.; Tryhuba, I.; Komarnitskyi, S.; Tabor, S.; Kwaśniewski, D.; Mudryk, K.; Faichuk, O.; Hohol, T.; Tomaszewska-Górecka, W. Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal. Energies 2022, 15, 2015. https://doi.org/10.3390/en15062015
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).